Có 5 sách Toán giống nhau, 3 sách lý giống nhau, 2 sách Hóa giống nhau. Chia 10 sách cho 7 người, mỗi người 1 quyển. Hỏi có bao nhiêu cách chia?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chia là:
\(A^7_{10}=604800\left(cách\right)\)
Đáp án B
30 quyển sách chia thành 15 bộ gồm :
+) 6 bộ giống nhau gồm 1 Toán- 1 Lý
+) 5 bộ giống nhau gồm 1 Lý – 1 Hóa
+) 4 bộ giống nhau gồm 1 Toán – 1 Hóa
Chọn 6 học sinh trong 15 học sinh để trao bộ Toán- Lý có C 15 6 cách
Chọn 5 học sinh trong 9 học sinh còn lại để trao bộ Lý- Hóa có C 9 5 cách
Vậy 4 học sinh còn lại sẽ được nhận bộ Toán – Hóa. Vậy có C 15 6 . C 9 5 cách trao thưởng.
Chọn A
Giả sử có a học sinh nhận sách Toán và Lí, b học sinh nhận sách Lí và Hóa, c học sinh nhận sách Toán và Hóa.
Suy ra
Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.
Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.
Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:
+ 1 “buộc” Toán.
+ 1 “buộc” Lý.
+ 5 quyển Hóa.
Thì sẽ có 7! cách xếp.
Vậy theo quy tắc nhân ta có 7!4!3!=725760 cách xếp.
Chọn C.