Tính
B = 3 + \(3^2\)+ \(3^3\) + ...+ \(3^{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)
Mà a + b + c = 3 nên a = b = c = 1
Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)
(Dấu . là dấu nhân)
a/\(\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}:3\)
\(=\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)
\(=\dfrac{2}{5}\cdot1\)
\(=\dfrac{2}{5}\)
b/\(\dfrac{2010}{2018}:\dfrac{1}{2}+\dfrac{7}{2018}:\dfrac{1}{2}\)
\(=\left(\dfrac{2010}{2018}+\dfrac{7}{2018}\right):\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}:\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}\cdot2\)
\(=\dfrac{2017}{1009}\)
a, \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) : 3
= \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) \(\times\) \(\dfrac{1}{3}\)
= \(\dfrac{2}{5}\) \(\times\) ( \(\dfrac{4}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{2}{5}\) \(\times\) 1
= \(\dfrac{2}{5}\)
b, \(\dfrac{2010}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{7}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{1}{2018}\) : \(\dfrac{1}{2}\)
= \(\dfrac{2010}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{7}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{1}{2018}\) \(\times\) \(\dfrac{2}{1}\)
= \(\dfrac{2}{1}\) \(\times\) ( \(\dfrac{2010}{2018}\) + \(\dfrac{7}{2018}\) + \(\dfrac{1}{2018}\))
= 2 \(\times\) \(\dfrac{2018}{2018}\)
= 2 \(\times\) 1
= 2
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)
\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)
\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)
Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\)
\(\frac{3}{2}A=\frac{3}{2}\cdot\left[\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\right]+\frac{1}{2}\)
\(\frac{3}{2}A=\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2019}+\frac{1}{2}\)
\(\frac{3}{2}A=\left[\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2019}\right]-\left[\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\right]+\frac{1}{2}\)
\(\frac{3}{2}A=\left(\frac{3}{2}\right)^{2019}-\frac{3}{2}+\frac{1}{2}\)
Còn lại bn tự làm nốt
\(B=3+3^2+3^3+...+3^{2018}\)
\(3B=3.\left(3+3^2+3^3+...+3^{2018}\right)\)
\(3B=3^2+3^3+3^4+...+3^{2019}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2019}\right)-\left(3+3^2+3^3+...+3^{2018}\right)\)
\(2B=3^{2019}-3\)
\(\Rightarrow B=\dfrac{3^{2019}-3}{2}\)
\(#WendyDang\)
\(B=3^1+3^2+3^3+...+3^{2018}\)
\(3\cdot B=3^2+3^3+3^4+...+3^{2019}\)
\(B=(3^{2019}-3):2\)