+Phân tích đa thức thành nhân tử:
\(l,x^3+y^3+21x+21y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
a: x^2+4xy-21y^2
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
=5x(x+y)+y(x+y)
=(x+y)(5x+y)
c: \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
=x(x+5y)-3y(x+5y)
=(x+5y)(x-3y)
d: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
=x(x-2y)-5y(x-2y)
=(x-2y)(x-5y)
a) \(x^2+4xy-21y^2\)
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(5x+y\right)\left(x+y\right)\)
c) \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
\(=x\left(x+5y\right)-3y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-3y\right)\)
d) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-5y\right)\left(x-2y\right)\)
\(=4x^4+21x^2y^2+y^4-25x^2y^2\)
\(\left(2x^2+y^2\right)-\left(5xy\right)^2\)
\(\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
=4x4+21x2y2+y4−25x2y2=4x4+21x2y2+y4−25x2y2
(2x2+y2)−(5xy)2(2x2+y2)−(5xy)2
(2x2+y2−5xy)(2x2+y2+5xy)
`x^3+y^3+21x+21y`
`=(x+y)(x^2-xy+y^2)+21(x+y)`
`=(x+y)(x^2-xy+y^2+21)`
\(x^3+y^3+21x+21y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+21\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+21\right)\)