K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

1.

A = (22.21.20 - 2.1.0) : 3 

A = 9240 : 3

A = 3080

3.A = 3080 x 3

3.A = 9240

16 tháng 10 2020

A=1.2+2.3+3.4+.....+20.21

B= 1 mũ 2+2 mũ 2+ 3 mũ 3+....+20 mũ 2

19 tháng 7 2017

= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 + ...... + 3024-3023/3023.3024

= 1-1/2+1/2-1/3+1/3-1/4+.....+1/3023-1/3024

= 1- 1/3024 = 3023/3024

19 tháng 7 2017

=1-1/2+1/2-1/3+1/3-1/4+.......+1/3023-1/3014

=1-1/3024=3023/3024

k cho mình nha

26 tháng 11 2017

Ta có : A=1.2+2.3+3.4+....+2015.2016

=>3A= 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 2017.2018.3

=>3A= 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5-2 ) + 4.5.( 6-3 ) + ... 2017 . 2018 . ( 2019 - 2016 )

=>3A=-1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 +.....+ 2017 . 2018 .2019 - 2017 . 2018 . 2016

=>A= 2017 . 2018 . 2019
 

1 tháng 4 2018

=n.(n+1).(n+2)/3

1 tháng 4 2018

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

9 tháng 8 2017

có lỗi ko

Ta có : A = 1.2 + 2.3 + 3.4 + ..... + 49.50

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 49.50.51

=> 3A = 49.50.51

= >A = 49.50.51/3 = 41650

10 tháng 1 2017

bó tay kkk

22 tháng 8 2017

B = 6 + 6^3 + 6^5 + ... + 6^2015

=> 6^2.B = 6^2(6 + 6^3 + 6^5 + ... + 6^2015

=> 36B = 6^2.6 + 6^3.6 + 6^5.6 + ... + 6^2015 .6 

=> 36B = 6^3 + 6^4 + 6^6 + ... + 6^2016

Lấy 36B trừ đi B, ta có:

     35B = 6^2016 - 6 

=> B = (6^2016 - 6)/35

2 tháng 12 2016

Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]

\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)

\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)

\(\Rightarrow\)3A=n.(n+1)(n+2)

\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)

17 tháng 6

Tại sao có 3A