các bạn giúp mình với (toán lớp 9)
tìm số đo góc @ biết tan@ + cot@=2
(@ là alpha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cosa=3/5
3pi/2<a<2pi
=>sin a<0
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà sin a<0
nên sina =-4/5
tan a=-4/5:3/5=-4/3
cot a=1:(-4/3)=-3/4
a) \(\cos \alpha = - 0,75\)
\( \Leftrightarrow \alpha ={138^ \circ }35'36''\) hay \(\alpha =2,4188584\) rad
b) \(\tan \alpha = 2,46\)
\( \Leftrightarrow \alpha ={67^ \circ }52'01''\) hay \(\alpha =1,1846956\) rad
c) \(\cot \alpha = -6,18\)
\( \Leftrightarrow \alpha ={ -9^ \circ }11'30''\) hay \(\alpha = -0,1604\) rad
\(A=sin^2a+cos^2a+\left(tana\cdot cota\right)^2\)
\(=1+1^2\)
\(=1+1=2\)
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
+) Nửa đường tròn đơn vị: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành (H.3.2).
+) Với mỗi góc \(\alpha ({0^o} \le \alpha \le {180^o})\)có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị nói trên để \(\widehat {xOM} = \alpha .\) Khi đó:
\(\sin \alpha = {y_0}\) là tung độ của M
\(\cos \alpha = {x_0}\) là hoành độ của M
\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha \ne {90^o})\)
\(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha \ne {0^o},\alpha \ne {180^o})\)
Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
Lại có \(\tan\alpha+\cot\alpha=2\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha-2=0\Leftrightarrow\frac{\cot^2\alpha-2\cot\alpha+1}{\cot\alpha}=0\)
\(\Leftrightarrow\cot\alpha=1\Leftrightarrow\alpha=45^0\)
Vậy \(\alpha=45^0\)
tan^2@+cos^2@=1 mà ko tính đc à