phân tích thành nhân tử
\(a^2-10a+25-4b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a2=4b2-4a+1
=(2a)2-2*2a*1+12-4b2= (2a-1)2-(2b)2(2a-1-2b)(2a-1+2b)
\(a^2-10a+25-y^2-4yz-4z^2\)
\(=a^2-2.a.5+5^2-y^2-2.y.2z-\left(2z\right)^2\)
\(=\left(a-5\right)^2-\left(y+2z\right)^2\)
\(=\left(a-y-2z-5\right)\left(a+y+2z-5\right)\)
Very easy
\(a^2-10a+25-y^2-4yz-4z^2\)
\(=\left(a-5\right)^2-\left(y+2z\right)^2\)
\(=\left(a-5-y-2z\right)\left(a-5+y+2z\right)\)
1) 36x2 - a2 + 10a - 25
= 36x2 - ( a2 - 10a + 25 )
= 36x2 - ( a - 5 )2
= ( 6x - a + 5)( 6x - a - 5)
2) x2 - 2x + 1 - a2 - 2ab - b2
= (x - 1)2 - ( a + b)2
= ( x - 1 - a - b)(x-1+a-b)
1) 36x2 - a2 +10a -25
= 36x2-(a2-10a+25)
=(6x)2 - (a-5)2
= (6x - a + 5)(6x+a-5)
2) x2-2x+1-a2-2ab-b2
= (x2-2x+1)-(a2-2ab-b2)
= (x-1)2 - (a-b)2
= (x-1-a+b)(x-1+a-b)
a2 - 10a + 25 - y2 - 4yz - 4z2
( a2 -10a + 52 ) - ( y2 + 4yz + 4z2 )
( a - 5 )2 - ( y + 2z )2
[ ( a - 5 ) + ( y + 2z ) ] x [ ( a - 5 ) - ( y + 2z ) ]
ở trên chỗ - ( y2 + 4yz + 4z2 ) đấy là vì tớ đặt dấu trừ trước ngoặc nên bên trong đổi dấu đấy
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
`#040911`
`a)`
`196 - a^2 + 2ab - b^2`
`= 196 - (a^2 - 2ab + b^2)`
`= 196 - (a - b)^2`
`= 14^2 - (a - b)^2`
`= (14 - a + b)(14 + a - b)`
`b)`
`a^2 + 6a - 4b^2 + 9`
`= (a^2 + 6a + 9) - 4b^2`
`= [ (a)^2 + 2*a*3 + 3^2] - (2b)^2`
`= (a + 3)^2 - (2b)^2`
`= (a + 3 - 2b)(a + 3 + 2b)`
`c)`
`4x - 4 + 9y^2 - x^2`
`= 9y^2 - (x^2 - 4x + 4)`
`= (3y)^2 - [ (x)^2 - 2*x*2 + 2^2]`
`= (3y)^2 - (x - 2)^2`
`= (3y - x + 2)(3y + x - 2)`
`d)`
`5x^2 - 10x + 5 - 45t^2`
`= 5*(x^2 - 2x + 1 - 9t^2)`
`= 5*[ (x^2 - 2x + 1) - 9t^2]`
`= 5*{ [(x)^2 - 2*x*1 + 1^2] - (3t)^2}`
`= 5*[ (x - 1)^2 - (3t)^2]`
`= 5*(x - 1 - 3t)(x - 1 + 3t)`
`e)`
`x^2 - 36y^2t^2 - 10x +25`
`= (x^2 - 10x + 25) - 36y^2t^2`
`= [ (x)^2 - 2*x*5 + 5^2] - (6yt)^2`
`= (x - 5)^2 - (6yt)^2`
`= (x - 5 - 6yt)(x - 5 + 6yt)`
a: =196-(a^2-2ab+b^2)
=196-(a-b)^2
=(14-a+b)(14+a-b)
b: \(=\left(a^2+6a+9\right)-4b^2\)
\(=\left(a+3\right)^2-4b^2\)
\(=\left(a+3-2b\right)\left(a+3+2b\right)\)
c: \(=9y^2-\left(x^2-4x+4\right)\)
\(=\left(3y\right)^2-\left(x-2\right)^2\)
\(=\left(3y-x+2\right)\left(3y+x-2\right)\)
d: \(=5\left(x^2-2x+1-9t^2\right)\)
\(=5\left[\left(x-1\right)^2-\left(3t\right)^2\right]\)
\(=5\left(x-1-3t\right)\cdot\left(x-1+3t\right)\)
e: \(=x^2-10x+25-36y^2t^2\)
\(=\left(x-5\right)^2-\left(6yt\right)^2\)
\(=\left(x-5-6yt\right)\left(x-5+6yt\right)\)
\(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)
\(=2a^2+2b^2+2c^2+2ab+2ac+2bc-2ab-2bc+2ac-4b^2\)
\(=2a^2-2b^2+2c^2+4ac\)
\(=2\left[\left(a^2+2ac+c^2\right)-b^2\right]=2\left[\left(a+c\right)^2-b^2\right]\)
\(=2\left(a+c-b\right)\left(a+b+c\right)\)
\(a^2-10a+25-4b^2\)
\(=\left(a^2-2.a.5+5^2\right)-\left(2b\right)^2\)
\(=\left(a-5\right)^2-\left(2b\right)^2\)
\(=\left(a-2b-5\right)\left(a+2b-5\right)\)
\(a^2-10a+25-4b^2\)
\(=\left(a^2-2.a.5+5^2\right)-\left(2b\right)^2\)
\(=\left(a-5\right)^2-\left(2b\right)^2\)
\(=\left(a-2b-5\right)\left(a+2b-5\right)\)