K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2023

\(M=19^{2k}+5^{2k}+1995^{2k}+1996^{2k}\left(k\in N;k>0\right)\)

\(\Rightarrow M=\overline{.....1}+\overline{.....5}+\overline{.....5}+\overline{.....6}\)

\(\Rightarrow M=\overline{......7}\)

\(M\) có chữ số tận cùng là chữ số \(7\)

Nên \(M\) không phải là số chính phương.

15 tháng 1 2016

Ta có: 1 chia 3 dư 1

Ta có:9 chia hết cho 3

=>92k chia hết cho 3

Ta có: 77 = 2  (mod3)

=>772k = 22k (mod 3)

=>772k = 4k  (mod 3)

Mà 4 = 1 (mod 3)

=> 4k = 1k (mod 3)

Nên 772k = 1 (mod 3)

=> 772k chia 3 dư 1

Ta có: 1977 chia hết cho 3

=>19772k chia hết cho 3

Vậy A chia 3 dư 1+0+1+0 = 2

Mà số chính phương chia 3 chỉ có thể dư 1 hoặc 2

Vì vậy A không phải là số chính phương (đpcm)

15 tháng 1 2016

Làm đi,ai giúp mk với

31 tháng 1 2020

bạn dùng đồng dư mod 25 nha bạn

 số này có tận cùng là 0 nên nếu nó là scp nó phải chia hết cho 25

bạn cm nó ko chia hết cho 25

31 tháng 1 2020

bạn c/m nó không chia hết đc k mình cũng nghĩ đến trường hợp này rồi nhưng không ra :(

30 tháng 12 2018

theo mình thế này mới đúng 

 Vì a < b  và a và b là 2 số tự nhiên liên tiếp => b = a + 1

Gọi ƯCLN(a,b) = d

=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)

=> \(a+1-a⋮d=>1⋮d\)

=> \(d\inƯ\left(1\right)=>d=1\)

Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau 

30 tháng 12 2018

Nếu a<b thì b=a+1 rồi làm tượng tự từ chỗ " Gọi....." thôi. Ko cần phải dài dòng như vậy đâu, bài này mk làm nhiều rồi

25 tháng 6 2015

Gọi ƯCLN(2k+1; 2k+3) là d. Ta có:

2k+1 chia hết cho d

2k+3 chia hết cho d

=>2k+3 - (2k+1)chia hết chio d => 2 chia hết chi d

Mà 2k +1 và 2k+3 đều là số lẻ không chia hết cho 2

=> d\(\ne\) 2

=>d=1

=>2k+1 và 2k+3 nguyên tố cùng nhau.