Tổng sau có thể là số chính phương không? Vì sao?
`M=` \(19^{2k}\)\(+5^{2k}\)\(+1995^{2k}\)\(+1996^{2k}\) `(` Với `k` là số tự nhiên, `k>0)`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1 chia 3 dư 1
Ta có:9 chia hết cho 3
=>92k chia hết cho 3
Ta có: 77 = 2 (mod3)
=>772k = 22k (mod 3)
=>772k = 4k (mod 3)
Mà 4 = 1 (mod 3)
=> 4k = 1k (mod 3)
Nên 772k = 1 (mod 3)
=> 772k chia 3 dư 1
Ta có: 1977 chia hết cho 3
=>19772k chia hết cho 3
Vậy A chia 3 dư 1+0+1+0 = 2
Mà số chính phương chia 3 chỉ có thể dư 1 hoặc 2
Vì vậy A không phải là số chính phương (đpcm)
bạn dùng đồng dư mod 25 nha bạn
số này có tận cùng là 0 nên nếu nó là scp nó phải chia hết cho 25
bạn cm nó ko chia hết cho 25
bạn c/m nó không chia hết đc k mình cũng nghĩ đến trường hợp này rồi nhưng không ra :(
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2k+1; 2k+3) là d. Ta có:
2k+1 chia hết cho d
2k+3 chia hết cho d
=>2k+3 - (2k+1)chia hết chio d => 2 chia hết chi d
Mà 2k +1 và 2k+3 đều là số lẻ không chia hết cho 2
=> d\(\ne\) 2
=>d=1
=>2k+1 và 2k+3 nguyên tố cùng nhau.
\(M=19^{2k}+5^{2k}+1995^{2k}+1996^{2k}\left(k\in N;k>0\right)\)
\(\Rightarrow M=\overline{.....1}+\overline{.....5}+\overline{.....5}+\overline{.....6}\)
\(\Rightarrow M=\overline{......7}\)
Vì \(M\) có chữ số tận cùng là chữ số \(7\)
Nên \(M\) không phải là số chính phương.