K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2023

Bài 6:

Ta có:

\(sin^2x+cos^2x=1\)

\(\Leftrightarrow cos^2x=1-sin^2x\)

\(\Leftrightarrow cos^2x=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

\(\Leftrightarrow cosx=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}\) 

Mà: \(tanx=\dfrac{sinx}{cosx}\)

\(\Leftrightarrow tanx=\dfrac{1}{3}:\dfrac{2\sqrt{2}}{3}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\) 

\(\Leftrightarrow\text{c}otx=\dfrac{1}{tanx}=1:\dfrac{\sqrt{2}}{4}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

Bài 10:

a: \(\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OA}\)

\(=\overrightarrow{AO}+\overrightarrow{OA}=\overrightarrow{0}\)

b: \(\overrightarrow{OA}+\overrightarrow{BC}+\overrightarrow{DO}+\overrightarrow{CD}\)

\(=\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{BD}\)

\(=\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{BA}\)

26 tháng 10 2021

câu 5: 

x=3,6

y=6,4

câu 6: chụp lại đề

câu 7:

a)ĐKXĐ: \(x\ge0\)

\(3\sqrt{x}=\sqrt{12}\\ \Rightarrow9x=12\\ \Rightarrow x=\dfrac{4}{3}\)

b) ĐKXĐ: \(x\ge6\)

\(\sqrt{x-6}=3\\ \Rightarrow x-6=9\\ \Rightarrow x=15\)

26 tháng 10 2021

Câu 5: 

Áp dụng định lý Pi-ta-go ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{6^2+8^2}\\ \Rightarrow BC=10\)

Áp dụng HTL ta có: \(x.BC=AB^2\Rightarrow x.10=6^2\Rightarrow x=3,6\)

Áp dụng HTL ta có: \(x.BC=AC^2\Rightarrow x.10=8^2\Rightarrow x=6,4\)

6:

a: Xét ΔCDM và ΔBAM có

MC=MB

góc CMD=góc BMA

MD=MA

=>ΔCDM=ΔBAM

b: ΔCDM=ΔBAM

=>góc CDM=góc BAM

=>CD//AB

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC//BD và AC=BD và AB=DC

c: Xét ΔABC có AB>AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB>HC

Xét ΔECB có HB>HC

mà HB,HC lần lượt là hình chiếu của EB,EC trên BC

nên EB>EC

29 tháng 11 2021

Bài 5:

Gọi kim loại đó là R thì CTHH oxit KL đó là \(R_2O_3\)

\(M_{R_2O_3}=\dfrac{20,4}{0,22}\approx102(g/mol)\\ \Rightarrow M_R=\dfrac{102-3.16}{2}=27(g/mol)\\ \text {Vậy R là nhôm (Al) và CTHH oxit là }Al_2O_3\)

Bài 6:

\(a,1,5.6.10^{-23}=9.10^{-23}(\text {nguyên tử Cu})\\ b,n_{CaCO_3}=\dfrac{10}{100}=0,1(mol)\\ \text {Số phân tử đá vôi là: }0,1.6.10^{-23}=0,6.10^{-23}\\ c,n_{Al}=\dfrac{12.10^{-23}}{6.10^{-23}}=2(mol)\\ \Rightarrow m_{Al}=2.27=54(g)\\ d,\%_N=\dfrac{14.2}{60}.100\%=\dfrac{140}{3}\%\\ \Rightarrow m_{N}=12.\dfrac{140}{3}\%=5,6(g)\\ \Rightarrow n_{N}=\dfrac{5,6}{14}=0,4(mol)\\ \text {Số nguyên tử N là: }0,4.6.10^{-23}=2,4.10^{-23}\)

29 tháng 11 2021

 em cảm ơn ạ

Bài 13:

góc A=180-80-30=70 độ

=>góc BAD=góc CAD=70/2=35 độ

góc ADC=80+35=115 độ

góc ADB=180-115=65 độ

Bài 14: 
Xét ΔABC vuông tại A 
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)

Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Bài 4:

a. ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ x-1\neq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 3\end{matrix}\right.\)

b. \(B=\frac{x-3}{\frac{x-1-2}{\sqrt{x-1}+\sqrt{2}}}=\sqrt{x-1}+\sqrt{2}\)

\(x=4(2-\sqrt{3})\Rightarrow x-1=7-4\sqrt{3}=(2-\sqrt{3})^2\)

\(\Rightarrow \sqrt{x-1}=2-\sqrt{3}\Rightarrow B=\sqrt{x-1}+\sqrt{2}=2-\sqrt{3}+\sqrt{2}\)

c.

$\sqrt{x-1}\geq 0$ với mọi $x\geq 1; x\neq 3$

$\Rightarrow B=\sqrt{x-1}+\sqrt{2}\geq \sqrt{2}$

Vậy $B_{\min}=\sqrt{2}$ khi $x=1$

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Bài 5:
\(C=\frac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{xy}}\)

\(=\frac{(\sqrt{x}+\sqrt{y})^2}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})=(\sqrt{x}+\sqrt{y})-(\sqrt{x}-\sqrt{y})\)

\(=2\sqrt{y}\) vẫn phụ thuộc vào biến $y$ bạn ạ. Bạn xem lại đề.

NV
7 tháng 3 2023

Hệ có nghiệm duy nhất khi \(m^2\ne1\Rightarrow m\ne\pm1\)

Khi đó: \(\left\{{}\begin{matrix}x+my=m+1\\m^2x+my=3m^2-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+my=m+1\\\left(m^2-1\right)x=3m^2-2m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Đặt \(P=xy=\dfrac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)^2}=\dfrac{3m^2-2m-1}{\left(m+1\right)^2}=\dfrac{-\left(m+1\right)^2+4m^2}{\left(m+1\right)^2}\)

\(=-1+\left(\dfrac{2m}{m+1}\right)^2\ge-1\)

\(P_{min}=-1\) khi \(m=0\)

a: AD vuông góc CD

SA vuông góc CD

=>CD vuông góc (SAD)

Kẻ AH vuông góc SD

=>CD vuông góc AH

mà SD vuông góc AH

nên AH vuông góc (CDS)

=>d(A;(SCD))=AH=căn (4a^2+16a^2/8a^2)=căn 10/2

Kẻ MP//AB//CD

=>AP/AD=AM/AC

=>AP/4a=1/4

=>AP=a

=>PD=3a

PQ vuông góc SD

PQ vuông góc CD

=>PQ vuông góc (SCD)

mà PM//(SCD)

nên d(P;(SCD))=PQ

Xét ΔADH có PQ/AH=PD/AD

\(\dfrac{PQ}{\sqrt{10}:2}=\dfrac{3a}{4a}=\dfrac{3}{4}\)

=>PQ=3 căn 10/8

=>d(M;(SCD))=PQ=3căn 10/8

Kẻ NG//AM

Kẻ GU vuông góc SD

=>d(G;(SCD))=GU

GU/AH=SG/SA=1/2

=>GU=căn 10/4

b: (SCD;ABCD))=(AD;SD)=góc ADH

AH=AD*cosADH

=>cosADH=căn 10/8

=>góc ADH=67 độ

(SBD;(ABCD))=góc SOA

SA=AO*tan SOA

=>tan SOA=2/5

=>góc SOA=22 độ