Tìm GTLN của: 5-8x-x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Bạn coi lại đề, GTLN và GTNN của biểu thức \(\dfrac{4x^2-8x+5}{x^2+1}\) rất xấu, và phải dùng kiến thức lớp 9 để tìm
vâng bn có thể lm kiến thức lớp 9 về delta để giải hộ m dc ko akk
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
\(A=2x^2+8x-24\)
\(=2\left(x^2+4x-12\right)\)
\(=2\left[x^2+4x-4-8\right]\)
\(=2\left[\left(x-2\right)^2-8\right]\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2-8\ge-8\)
\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)
Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)
\(B=x^2-8x+5=x^2-8x+16-9\)
\(=x^2-2\left(4x\right)+4^2-9\)
\(=\left(x-4\right)^2-9\)
\(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2-9\ge-9\)
Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)
1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)
\(minA=-1\Leftrightarrow x=-4\)
2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)
\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
\(-x^2-5x+5\\ =-\left(x^2+5x-5\right)\\ =-\left(x^2+5x+\dfrac{25}{4}-\dfrac{45}{4}\right)\\ -\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\)
có \(\left(x+\dfrac{5}{2}\right)^2\ge0\\ =>-\left(x+\dfrac{5}{2}\right)^2\le0\\ =>-\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\le\dfrac{45}{4}\)
dấu "=" xảy ra khi \(\left(x+\dfrac{5}{2}\right)^2=0< =>x=-\dfrac{5}{2}\)
vậy GTLN của biểu thức A là 45/4 khi x=-5/2
\(5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(\left(x+4\right)^2-21\right)\)
\(=21-\left(x+4\right)^2\le21\)
Min bằng 21 \(\Leftrightarrow x=-4\)