K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Ta có : \(\frac{y+10}{y-10}=\frac{7}{3}\)

\(\Rightarrow\)  \(\frac{y-10+20}{y-10}=\frac{7}{3}\)

\(\Rightarrow\)  \(1+\frac{20}{y-10}=\frac{7}{3}\)

\(\Rightarrow\)  \(\frac{20}{y-10}=\frac{4}{3}\)

\(\Rightarrow\)  \(y-10=20x3:4\)

\(\Rightarrow\)  \(y-10=15\)

\(\Rightarrow\)  \(y=25\)

Vậy y = 25

     ~ Chúc các bn hok tốt và may mắn ~

22 tháng 7 2017

Theo bài ra ta có (Y+10)x3=(Y-10)x7

          \(\Rightarrow\)3Y+30=7Y-70

        \(\Rightarrow\)30=4Y-70

       \(\Rightarrow\)4Y=30+70

      \(\Rightarrow\)4Y=100

     \(\Rightarrow\)Y=100:4=25

22 tháng 7 2017

=> y=7-10=3+10

=> 7 -10 =-3

=> 3+10= 13

=> y ko tồn tại

22 tháng 7 2017

Ta có :

     y + 10 / y - 10   =   7 / 3 

=> ( y + 10 ) x 3     =  ( y - 10 ) x 7

     3 x y + 10 x 3    =   7 x y - 10 x 7

     3 x y + 30          =   7 x y - 70

     3 x y                  =  7 x y - 70 - 30

     3 x y                  = 7 x y - 100

     7 x y - 3 x y       = 100

     ( 7 - 3 ) x y        = 100

      4 x y                 = 100

       y                      = 100 : 4

       y                      = 25

Vậy y = 25

4 tháng 8 2017

\(\frac{2}{7}:y=\frac{10}{21}.\frac{9}{14}\)

\(\frac{2}{7}:y=\frac{15}{49}\)

\(y=\frac{2}{7}:\frac{15}{49}\)

\(y=\frac{2}{7}.\frac{49}{15}\)

\(y=\frac{14}{15}\)

\(y-\frac{1}{3}=\frac{10}{21}:\frac{15}{28}\)

\(y-\frac{1}{3}=\frac{10}{21}.\frac{28}{15}\)

\(y-\frac{1}{3}=\frac{8}{9}\)

\(y=\frac{8}{9}+\frac{1}{3}\)

\(y=\frac{8}{9}+\frac{3}{9}\)

\(y=\frac{11}{9}\)

4 tháng 8 2017

a) Ta có :  \(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)

\(\Rightarrow\)       \(y-\frac{1}{3}=\frac{8}{9}\)

\(\Rightarrow\)       \(y\)        \(=\frac{8}{9}+\frac{1}{3}\)

\(\Rightarrow\)      \(y\)         \(=\frac{11}{9}\)

Vậy \(y=\frac{11}{9}\)

b) Ta có : \(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\) 

\(\Rightarrow\)      \(\frac{2}{7}\div y=\frac{15}{49}\)

\(\Rightarrow\)                  \(y=\frac{2}{7}\div\frac{15}{49}\)      

\(\Rightarrow\)                  \(y=\frac{14}{15}\)

Vậy \(y=\frac{14}{15}\)

                     Cbht !!!

27 tháng 1 2022

Đây đâu phải toán lớp một mà là toán lớp 6 thì có

29 tháng 10 2016

C, CHO 7X=3Y VA X -Y =16

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)

bạn viết lại đề đi đè gì mà sai hết

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

25 tháng 2 2018

Sửa lại đề nha : 

   \(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)

mà x + z = 7 + y

=> x + z - y = 7 

Áp dụng tính chất dãy tỉ số bằng ngau ta có :

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)

\(\Rightarrow\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{6}=1\Rightarrow y= 6.1=6\)

\(\frac{z}{10}=1\Rightarrow z=10.1=10\)

   Vậy x = 3 ; y =6 ; z = 10 .

25 tháng 2 2018

áp dụng tính chất dãy tỉ số bằng nhau

ta có:\(\frac{x}{3}\)=\(\frac{6}{y}\)=\(\frac{z}{10}\)=\(\frac{x+z}{3+10}\)=\(\frac{7+y}{13}\) =\(\frac{6+7+y}{y+13}\) =\(\frac{y+13}{y+13}\)=1

=>x=3 ; y=6 ; z=10

27 tháng 3 2020

ta có : \(\hept{\begin{cases}1+\frac{1}{x+3}-2.\frac{1}{y-1}=10\\1+3.\frac{1}{x+3}+\frac{1}{y-1}=7\end{cases}}\) 

gọi a=\(\frac{1}{x+3}\);b=\(\frac{1}{y-1}\) ta được

\(\hept{\begin{cases}1+a-2b=10\\1+3a+b=7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a-2b=9\\3a+b=6\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=3\\b=-3\end{cases}}\)

thay a=\(\frac{1}{x+3}\)ta được:\(\frac{1}{x+3}=3\Rightarrow x=\frac{-8}{3}\)

tương tự y=\(\frac{2}{3}\)

vậy......

26 tháng 10 2017

oops thọt cu

4 tháng 11 2017

không nói linh tinh nha thánh troll trả lời thì trả lời đi bị trừ điểm đó