a) I x - 1,7 I = 2,3
b) I x + 3/4 I - 1/3 = 0
Giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x - 1,7| = 2,3
=> x - 1,7 = 2,3 hoặc x - 1,7 = -2,3
=> x = 4 hoặc x = -0,6
b) |x + 3/4| - 1/3 = 0
=> |x + 3/4| = 1/3
=> x + 3/4 = 1/3 hoặc x + 3/4 = -1/3
=> x = -5/12 hoặc x = -13/12
Chúc e học tốt !
Bài 1:
\(a)\left(\dfrac{-28}{29}\right).\left(\dfrac{-38}{16}\right)=\dfrac{\left(-28\right).\left(-38\right)}{29.16}=\dfrac{1064}{464}=\dfrac{133}{58}\)
\(b)\left(\dfrac{-21}{16}\right).\left(\dfrac{-24}{7}\right)=\dfrac{\left(-21\right).\left(-24\right)}{16.7}=\dfrac{504}{112}=\dfrac{9}{2}\)
\(c)\left|\dfrac{-12}{17}\right|.\left(\dfrac{-34}{9}\right)=\dfrac{12}{17}.\left(\dfrac{-34}{9}\right)=\dfrac{12.\left(-34\right)}{17.9}=\dfrac{-408}{153}=\dfrac{-8}{3}\)
Bài 3:
\(a)\left|x\right|=21\)
\(\Rightarrow\left[{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
\(b)\left|x\right|=\dfrac{17}{9};x< 0\)
\(\Rightarrow x=\dfrac{-17}{9}\)
\(c)\left|x\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(\left|x\right|=\dfrac{2}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
\(d)\left|x\right|=0,35;x>0\)
\(\Rightarrow x=0,35\)
Bài 4:
\(a)\left|x\right|-1,7=2,3\)
\(\Rightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-3}{5}\end{matrix}\right.\)
\(b)\left|x\right|+\dfrac{3}{4}-\dfrac{1}{3}=0\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=0+\dfrac{1}{3}\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=\dfrac{-1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=\dfrac{-13}{12}\end{matrix}\right.\)
Chúc bạn học tốt!
Ta có: a) | x - 1,7 | = 2,3
<=> x - 1,7 = 2,3
x - 1,7 = -2,3
<=> x = 2,3 + 1,7
x = -2,3 + 1,7
<=> x = 4
x = -0,6
b) | x + 3/4 | -1/3 = 0
a) Th1 : \(x-1,7\ge0=>x\ge1,7\)
Pt trở thành :
\(x-1,7=2,3\)
\(=>x=2,3+1,7=>x=4\) ( thỏa mãn )
Th2 : \(x-1,7< 0=>x< 1,7\)
PT trở thành :
\(-x+1,7=2,3\)
\(=>-x=0,6\)
\(=>x=-0,6\)( thỏa mãn )
Vậy nghiệm của pt trên là : \(\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
1 ) \(\left(x-4\right)^2-25=0\)
\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)
\(\Leftrightarrow-2\left(2x-4\right)=0\)
\(\Leftrightarrow x=2.\)
3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
5 ) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)
6 ) \(x^3+x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
7 ) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1.\)
8 ) \(x^4-4x^3-19x^2+106x-120=0\)
\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)
\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)
\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)
Đặt \(x^2+6x-7=t\)
\(\Leftrightarrow t\left(t-9\right)+8=0\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)
Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)
Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)
Vậy ........
a) \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=-\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{12}\\x=-\frac{13}{12}\end{cases}}\)
c) \(\left|x+\frac{1}{4}\right|-\frac{3}{4}=0\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{3}{4}\\x+\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
d) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
e) \(\left|4+2x\right|+4x=0\)
\(\Leftrightarrow\left|4+2x\right|=-4x\)
\(\Leftrightarrow\orbr{\begin{cases}4+2x=-4x\\4+2x=4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}-6x=4\\2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
a) (2x-5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2
x = -3
* Các câu b→e bạn cũng làm tương tự theo trật tự như vậy là được
* Các câu từ g → l thì bạn áp dụng lí thuyết sau:
Tích của hai số bằng 0 khi một trong hai số đó bằng 0
VD : g) x(x+7)=0
⇒ hoặc là x = 0 hoặc là x+7 = 0
( Bạn làm phép tính nhớ bỏ dấu ngoặc vuông trước nhé )
b: \(\Leftrightarrow2\left(4-3x\right)=14\)
=>4-3x=7
=>3x=-3
=>x=-1
c: \(\Leftrightarrow3\left(7-x\right)=-18+12=-6\)
=>7-x=-2
=>x=9
d: \(\Leftrightarrow3x-2=-\dfrac{1}{8}\)
=>3x=15/8
=>x=5/8
e: \(\Leftrightarrow5\left(3x-2x\right)=-15\)
=>x=-3
g: =>x=0 hoặc x+7=0
=>x=0 hoặc x=-7
h: =>x+12=0 hoặc x-3=0
=>x=3 hoặc x=-12
k: =>x=0 hoặc x+2=0 hoặc 7-x=0
=>\(x\in\left\{0;-2;7\right\}\)
l: =>x-1=0 hoặc x+2=0 hoặc x+3=0
=>\(x\in\left\{1;-2;-3\right\}\)
\(a,\left|x-1,7\right|=2,3\)
\(\Rightarrow\orbr{\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
\(b,\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=-\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{12}\\x=-\frac{13}{12}\end{cases}}\)
a/
|x-1,7| = 2,3
=> x-1,7 = 2,3 hoặc x-1,7 = -2,3
=> x= 4 hoặc x= -0,6
Vậy x \(\in\){4;-0,6}
b/
|x+3/4|-1/3=0
=> |x+3/4| = 1/3
=> x+3/4 = 1/3 hoặc x+3/4 = -1/3
=> x= -5/12 hoặc x= -13/12
Vậy x \(\in\){-5/12; -13/12}