K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Ta có :

\(x^6+1=x^6+x^4-x^4+1=x^4\left(x^2+1\right)-\left(x^4-1\right)=x^4\left(x^2+1\right)-\left(x^2-1\right)\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\) (đpcm)

19 tháng 12 2024

rr

18 tháng 12 2016

x^2017+x^2015+1=(x^2017-x)+(x^2015-x^2)+(x^2+x+1) (1)

Ta có:x^2017-x=x(x^2016-1)

Dễ thấy x^2016-1 chia hết cho x^3-1 hay chia hết cho x^2+x+1 suy ra x^2017-x chia hết cho x^2+x+1 (2)

Tương tự x^2015-x^2 chia hết cho x^2+x+1 (3)

và x^2+x+1 chia hết cho x^2+x+1 (4)

Từ (1)(2)(3)(4) ta có (đpcm).

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

9 tháng 2 2017

1/ a) \(x^2-x-1⋮x-1\)

=>\(x.\left(x-1\right)-1⋮x-1\)

=>\(-1⋮x-1\)(vì x.(x-1)\(⋮\)x-1)

=>x-1\(\inƯ\left(-1\right)\)

Đến đay tự làm 

b/c/d/e/ tương tự

18 tháng 3 2018

(X+1)(x.y-1)=5

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

29 tháng 10 2019

Sorry mn, câu 2 đề bài là

A=27+1863+x

phần sau vẫn thế nhé

các bn giúp mk nhah nhanh đi mà, xin đấy.khocroilẹ đi mà.

Bài 1: Bài giải

Vì a lẻ => a^2 lẻ => a^ - 1 chẵn

=> M chia hết cho 2

Vì a không chia hết cho 3=> a^2 chia hết cho 3 dư 1

=> a^2 - 1 chia hết cho 3=> M chia hết cho 3

Vì( 2,3 ) =1 => M chia hết cho 2.3=6

=> Mchia hết cho 6 (Đpcm)

Bài 2: 20. (x+1)^2 + (y - 3) ^2 =64

Vì 20.( x+1 )^2 \(\ge\)0 , ( y - 3 )^2\(\ge\)

=> 20 . ( x+1 ) ^2 \(\le\)64

=> (x+1 ) ^2 \(\le\)64/20 + 3,2

Vì (x+1 ) ^2 là số chính phương

\(\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1^2\right)=1\end{cases}}\)

TH1 (x+1)^2 =0 => (y - 3)^2 =64 = \(\left(\mp8^2\right)\)

=.> x= -1 \(\orbr{\begin{cases}y-3=8\Rightarrow y=11\\y-3=-8\Rightarrow y=-5\end{cases}}\)

TH2 (x+1)^2 = 1 \(\Rightarrow\)(y - 3)^2 =44 (vô lí)

Vậy (x,y )= (-1 , -11), (-1 , -5)

Chúc bạn học tốt

Bài 8:

a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)

\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)

b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)

\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)

c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)

d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12\cdot2n=24n⋮24\)(đpcm)