Cho A = 2 + 2² + 2³ + ......... +2⁶⁰. Tìm số dư của A khi chia cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
a = 2 + 2² + 2³ + 2⁴ + ... + 2⁶³ + 2⁶⁴
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁶¹ + 2⁶² + 2⁶³ + 2⁶⁴)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁶⁰.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2⁶⁰.30
= 30.(1 + 2⁴ + ... + 2⁶⁰) ⋮ 30
Lại có:
a = 30.(1 + 2⁴ + ... + 2⁶⁰)
= 3.10.(1 + 2⁴ + ... + 2⁶⁰) ⋮ 3
Vậy a ⋮ 3 và a ⋮ 10
a) A = 1 + 2 + 2² + ... + 2⁴¹
⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²
⇒ A = 2A - A
= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)
= 2⁴² - 1
b) A = 1 + 2 + 2² + ... + 2⁴¹
= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)
= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)
= 7 + 2³.7 + ... + 2³⁹.7
= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7
Vậy A ⋮ 7
Ta có:
A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹
= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)
= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)
= 3 + 2².3 + ... + 2⁴⁰.3
= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3
Vậy A ⋮ 3
c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰
= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)
= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)
= 15 + 2⁴.15 + ... + 2³⁸.15
= 15.(1 + 2⁴ + ... + 2³⁸)
= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5
Vậy A chia 5 dư 0
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
Lời giải:
$A=2+2^2+2^3+2^4+...+2^{100}+2^{101}$
$=2+2^2+(2^3+2^4+2^5)+....+(2^{99}+2^{100}+2^{101})$
$=6+2^3(1+2+2^2)+....+2^{99}(1+2+2^2)$
$=6+(1+2+2^2)(2^3+....+2^{99})$
$=6+7(2^3+....+2^{99})$
$\Rightarrow A$ chia $7$ dư $6$.
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
a, \(A=1+2+2^2+2^3+...+2^{2005}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)
\(2A=2+2^2+2^3+...+2^{2006}\)
\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2^{2006}-1\)
c, Số số hạng của A là : (2005 - 1) + 1 = 2005 (số hạng)
Nếu nhóm 3 số hạng vào 1 nhóm thì có : 2005 : 3 = 668 nhóm dư 1 số hạng
Ta có :
\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)
\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)
\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)
\(\Rightarrow A\div7\) dư 3
d, Làm tương tự c
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=\left(1+2+2^2\right)\left(2+2^4+...+2^{58}\right)\)
\(A=7.B⋮7\)
Vậy số dư của A khi chia cho 7 là 0.
A = 2 + 2² + 2³ + ... + 2⁶⁰
= 2(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy số dư của A khi chia cho 7 là 0