chứng minh : 2005^3 - 1 chia hết cho 2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(B=2004+2004^2+2004^3+...+2004^{10}\)
\(B=\left(2004+2004^2\right)+\left(2004^3+2004^4\right)+...+\left(2004^9+2004^{10}\right)\)
\(B=2004.\left(1+2004\right)+2004^3\left(1+2004\right)+...+2004^9\left(1+2004\right)\)
\(B=2004.2005+2004^3.2005+...+2004^9.2005\)
\(B=2005.\left(2004+2004^3+...+2004^9\right)⋮2005\)
\(\Rightarrow2005.\left(2004+2004^3+2004^9\right)\) chia hết cho \(2005\)
\(\Leftrightarrow B=2004+2004^2+2004^3+...+2004^{10}\) chia hết cho \(2005\) (đpcm)
B=2004 + 20042 + 20043 + ... + 200410
B=(2004 + 20042) + (20043 + 20044) + ... + (20049 + 200410)
B=2004.(1 + 2004) + 20043(1 + 2004) + ... + 20049(1 + 2004)
B=2004.2005 + 20043.2005 + ... + 20049.2005
B=2005.(2004 + 20043 + ... + 20049) ⋮ 2005 (đpcm)
C = 2004 + 20042+20043+20044+...+200410
C = (2004 +20042)+(20043+20044)+...+(20049+200410)
C = 2004(1+2004) + 20043 .(1+2004)+...+ 20049. (1+2004)
C = 2004 .2005 + 20043 .2005+....+20049.2005
C = 2005.(2004+20043 + ...+20049)
Vì 2005 chia hết cho 2005 => 2005.(2004+20043 + ...+20049) chia hết cho 2005 => C chia hết cho 2005(ĐPCM)
Ta có :
\(C=2004+2004^2+2004^3+...+2004^9+2004^{10}\)
\(=\left(2004+2004^2\right)+\left(2004^3+2004^4\right)+...+\left(2004^9+2004^{10}\right)\)
\(=2004\left(1+2004\right)+2004^3\left(1+2004\right)+...+2004^9\left(1+2004\right)\)
\(=2004.2005+2004^3.2005+...+2004^9.2005\)
\(=2005\left(2004+2004^3+...+2004^9\right)⋮2005\left(đpcm\right)\)
ta có A=2004+20042+...........................................+200410 tương đương A=2004.(1+2004)+20042.(1+2004)+..............+20049(1+2004)
A=2004.2005+20042.2005......................+20049.2005
ta có A=2005(2004+20042................20049)
suy ra A=[ 2005(2004+20042...............20049)] chia hết cho 2005
tương đưong A=(2004+20042................+200410) chia hết cho 2005
Ta có : 2005n+1 - 2005n
= 2005n ( 2005 - 1 )
= 2005n . 2004 luôn chia hết cho 2004
Vậy 2005n+1 - 2005n luôn chia hết cho 2004
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Ta có: 2005 đồng dư với 1 theo mod 2004 (hay 2005 chia 2004 dư 1)
=> 20053 đồng dư với 13 theo mod 2004
<=> 20053 đồng dư với 1 theo mod 2004
=> 20053-1 chia hết cho 2004
cảm ơn đạm thị trà hương