K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

\(P=\dfrac{x^2}{x^4+x^2+1}=\dfrac{x^2}{x^4+2x^2+1-x^2}=\dfrac{x^2}{\left(x^2+1\right)^2-x^2}=\dfrac{x^2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=a\cdot\dfrac{x}{x^2+x+1}\)

Có \(a=\dfrac{x}{x^2-x+1}\Rightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)

Đặt \(B=\dfrac{x}{x^2+x+1}\Rightarrow\dfrac{1}{B}=\dfrac{x^2+x+1}{x}=x+\dfrac{1}{x}+1=\dfrac{1}{a}-2\)

\(\Leftrightarrow\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)

Do đó \(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)

 

13 tháng 3 2021

Hic sao hay lỗi công thức thế :<

Do đó \(\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)

\(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)

12 tháng 10 2023

Ta có:

\(x^2+\dfrac{1}{x^2}=4\)\(\left(x\ne0\right)\)

\(\left(x^2+\dfrac{1}{x^2}\right)^2=16\)

\(x^4+\dfrac{2.x^2}{x^2}+\dfrac{1}{x^4}=16\)

\(x^4+\dfrac{1}{x^4}=16-2=14\)

12 tháng 10 2023

x² + 1/x² = 4

⇒ (x² + 1/x²)² = 16

⇒ x⁴ + 2.x².1/x² + 1/x⁴ = 16

⇒ x⁴ + 1/x⁴ + 2 = 16

⇒ x⁴ + 1/x⁴ = 16 - 2

⇒ x⁴ + 1/x⁴ = 14

1 tháng 7 2016

Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)

\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)

\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)

Thay vào M,ta có:

\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)

\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)

\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)

\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)

Vậy \(M=\frac{2a}{a^2+1}\)

2 tháng 7 2016

Làm hộ mk, phân tích đa thức thành nhân tử

a^4   b^4   c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2

30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)