help e
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
a: 5^n luôn có chữ số tận cùng là 5 với mọi n là số tự nhiên
=>5^100 có chữ số tận cùng là 5
b: \(2^{4k}\) có chữ số tận cùng là 6 với mọi k là số tự nhiên
mà 100=4*25
nên 2^100 có chữ số tận cùng là 6
c: 2023 chia 2 dư 1
mà \(9^{2k+1}\) luôn có chữ số tận cùng là 9
nên \(9^{2023}\) có chữ số tận cùng là 9
d: 2023 chia 4 dư 3
\(7^{4k+3}\left(k\in N\right)\) luôn có chữ số tận cùng là 3
Do đó: \(7^{2023}\) có chữ số tận cùng là 3
Quy luật:
+) các số có c/s tận cg là 0,1,5,6 nâng lên lũy thừa bậc nào (≠0) thì c/s tận cg vẫn là nó.
+) các số có tận cg là 2,4,8 nâng lên lt bậc 4n(n≠0) thì đều có c.s tận cg là 6.
+)các số có c/s tận cg là 3,7,9 nâng lên lt bậc 4n(n≠0) thì đều có c/s tận cg là 1.
+) số có tận cg là 3 khi nâng lên lũy thừa bậc 4n+3 sẽ có tận cùng là 7
+) số có tận cg là 7 khi nâng lên lũy thừa bậc 4n+3 sẽ có tận cùng là 3
+) số có tận cg là 2 khi nâng lên lũy thừa bậc 4n+3 sẽ có tận cùng là 8
+) số có tận cg là 8 khi nâng lên lũy thừa bậc 4n+3 sẽ có tận cùng là 2
+) số có c/s tận cg là 0,1,4,5,6,9 khi nâng lên lũy thừa bậc 4n+3 thì c/s tận cg là chính nó
Bài 3: áp dụng quy luật bên trên
\(a.5^{100}=\overline{..5}\)
\(b.2^{100}=2^{4.25}=\overline{..6}\)
\(c.9^{2023}=\overline{..9}\)
\(d.7^{2023}=7^{4.505+3}=\overline{...3}\)
Bài 4:
\(A=17^{2008}-11^{2008}-3^{2008}\)
\(=\left(\overline{...7}\right)^{4.502}-\left(\overline{..1}\right)^{2008}-\left(\overline{..3}\right)^{4.502}\)
\(=\overline{..1}-\overline{...1}-\overline{...1}\)
\(=\overline{..9}\)
Bài 5:
\(M=17^{25}+24^4-13^{21}\)
\(=\left(\overline{..7}\right)^{4.6}.\left(\overline{..7}\right)+\left(\overline{..4}\right)^{4.1}-\left(\overline{..3}\right)^{4.5}.\left(\overline{..3}\right)\)
\(\overline{..1}.\overline{..7}+\overline{..6}-\overline{..1}.\overline{..3}\)
\(=\overline{...7}+\overline{..6}-\overline{..3}\)
\(=\overline{...0}\)
\(=>M⋮10\)
Bài 1
a) \(2^{11}.64=2^{11}.2^6=2^{17}\)
Do \(16< 17\Rightarrow2^{16}< 2^{17}\)
Vậy \(2^{16}< 2^{11}.64\)
b) Do \(18>17\Rightarrow9^{18}>9^{17}\) (1)
\(9^{18}=\left(3^2\right)^{18}=3^{36}\)
Do \(36< 37\Rightarrow3^{36}< 3^{37}\)
\(\Rightarrow9^{18}< 3^{37}\) (2)
Từ (1) và (2) \(\Rightarrow9^{17}< 3^{37}\)
c) \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Do \(8< 9\Rightarrow8^{111}< 9^{111}\)
Vậy \(2^{333}< 3^{222}\)
d) \(3^{50}=\left(3^2\right)^{25}=9^{25}\)
Do \(9< 11\Rightarrow9^{25}< 11^{25}\)
Vậy \(3^{50}< 11^{25}\)
e) \(37< 38\Rightarrow3^{37}< 3^{38}\) (1)
Lại có: \(3^{38}=3^{2.19}=\left(3^2\right)^{19}=9^{19}\)
Do \(9< 10\Rightarrow9^{19}< 10^{19}\)
\(\Rightarrow3^{38}< 10^{19}\) (2)
Từ (1) và (2) \(\Rightarrow3^{37}< 10^{19}\)
f) Do \(17>16\Rightarrow17^{14}>16^{14}\) (1)
Do \(32>31\Rightarrow32^{11}>31^{11}\) (2)
Lại có:
\(16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(32^{11}=\left(2^5\right)^{11}=2^{55}\)
Do \(56>55\Rightarrow2^{56}>2^{55}\)
\(\Rightarrow16^{14}>32^{11}\) (3)
Từ (1), (2) và (3) \(\Rightarrow17^{14}>31^{11}\)
Bài 2:
a) \(2^n-64=0\)
\(2^n=64\)
\(2^n=2^6\)
\(n=6\)
b) \(5.3^{n-3}-405=0\)
\(5.3^{n-3}=405\)
\(3^{n-3}=405:5\)
\(3^{n-3}=81\)
\(n-3=4\)
\(n=4+3\)
\(n=7\)
c) \(4^n.8=2^{15}\)
\(\left(2^2\right)^n.2^3=2^{15}\)
\(2^{2n}.2^3=2^{15}\)
\(2^{2n+3}=2^{15}\)
\(2n+3=15\)
\(2n=15-3\)
\(2n=12\)
\(n=12:2\)
\(n=6\)
d) \(3.2^{n+1}+2^{n+2}=160\)
\(2^{n+1}.\left(3+2\right)=160\)
\(2^{n+1}.5=160\)
\(2^{n+1}=160:5\)
\(2^{n+1}=32\)
\(2^{n+1}=2^5\)
\(n+1=5\)
\(n=5-1\)
\(n=4\)
1, introduce => introduced
2, were => are
3, I => me
4, selled => sold
5, red => read
6, photoes => photos
7, every day by my parents => by my parents every day
8, watch and play => watched and played
9, practices => practiced
10, every afternoon by children => by children every afternoon
11, eat => eaten
12, Are => Is
Câu : \(5\) :
Khuyên chúng ta sống không chỉ biết nhận mà còn phải biết cho .
Câu \(6\) :
Dấu gạch thứ nhất : Đánh dấu chỗ bắt đầu lời nói của nhân vật
Đáp án : A - 2
Dấu gạch ngang thứ hai : Đánh dấu phần chú thích .
Đáp án : B - 1
~ chúc em học tốt ~
Câu 2)
b, Công thực hiện là
\(A=P.h=10m.h=10.6.12=720J\)
a, Phụ thuộc vào khối lượng và quãng đường vật di chuyển
A = F.s
A : công cần tính ( đơn vị J(Jun) ; 1kJ (ki lô jun)= 1000J)
F : lực vật tác động
s : quãng đường vật di chuyển
Câu 3)
Để tính công thực hiện trong 1s
P = A/t
P : công suất ( đơn vị W (oát) -1MGW = 1000kW = 1,000,000W)
A : công
t : thời gian (đơn vị giây)
b, Công suất thực hiện là
\(P=\dfrac{A}{t}=\dfrac{P.h}{t}=\dfrac{10m.h}{t}\\ =\dfrac{10.50.8}{50}=80W\)
Câu 4)
5p = 300s
10p = 600s
Công suất leo của Hương là
\(P=\dfrac{A}{t}=\dfrac{P.h}{t}\\ =\dfrac{10m.h}{t}=\dfrac{10.40.6}{300}=8W\)
Công suất leo của Lan là
\(P=\dfrac{10m.h}{t}=\dfrac{10.50.9}{600}=7,5W\)
Hương leo khoẻ hơn do 8 W > 7,5 W
`#3107.101107`
c)
Ta có:
`2x = 3y`
`=> x/3 = y/2 => x/15 = y/10`
`4y = 5z`
`=> y/5 = z/4 => y/10 = z/8`
`=> x/15 = y/10 = z/8`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/15 = y/10 = z/8 = (x - y - z)/(15 - 10 - 8) = (-27)/(-3) = 27/3 = 9`
`=> x/15 = y/10 = z/8 = 9`
`=>`\(x=15\cdot9=135\\ y=9\cdot10=90\\ z=8\cdot9=72\)
Vậy, giá trị của `x; y; z` lần lượt là `135; 90; 72`
d)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(x - 5)/3 = (y - 4)/2 = (x - 5 + y - 4)/(3 + 2) = (x + y - 5 - 4)/5 = (-1-9)/5 = (-10)/5 = -2`
`=> (x - 5)/3 = (y - 4)/2 = -2`
`=>`
\(x=\left(-2\cdot3\right)+5=-1\)
\(y=\left(-2\cdot2\right)+4=0\)
Vậy, giá trị của `x; y` lần lượt là `-1; 0`
e)
`(x - 1)/2 = (y - 2)/3 = (z - 3)/4`
`=> (x - 1)/2 = (2y - 4)/6 = (3z - 9)/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(x - 1)/2 = (2y - 4)/6 = (3z - 9)/12 = (x - 1 - (2y - 4) + 3z - 9)/(2 - 6 + 12) =`\(\dfrac{x-1-2y+4+3z-9}{8}=\dfrac{x-2y+3z+\left(-1+4-9\right)}{8}\\ =\dfrac{-10-6}{8}=\dfrac{-16}{8}=-2\)
`=> (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = -2`
`=>`\(x=\left(-2\cdot2\right)+1=-3\); \(y=\left(-2\cdot3\right)+2=-4\); \(z=\left(-2\cdot4\right)+3=-5\)
Vậy, giá trị của `x; y; z` lần lượt là `-3; -4; -5.`
6c
7d
8b
9c
10b
11a
#\(yGLinh\)
♥️