Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 châm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).
\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)
\(\Rightarrow n\left(\Omega\right)=6\)
Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)
\(A=\left\{3,4,5,6\right\}\)
\(\Rightarrow n\left(A\right)=4\)
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)
Không gian mẫu: Ω= {1;2;3;4;5;6} →n(Ω)=6
Gọi biến cố A:" Xuất hiện trên hai mặt chấm"
A ={3;4;5;6} ➝n(A)= 4
Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)
Ta có số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).
b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).
c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).
d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).
Sửa đề: Xuất hiện mặt 2 chấm
n(A)=1
n(omega)=6
=>P(A)=1/6
Δ=b^2-4*1*2=b^2-8
Để phương trình vô nghiệm thì b^2-8<0
=>-2 căn 2<b<2 căn 2
=>b=1 hoặc b=2
tham khảo
A là biến cố "Có 1 số chấm chia hết cho 2, 1 số chấm chia hết cho 3, và không xuất hiện 6 chấm", \(P\left(A\right)=\dfrac{4}{36}=\dfrac{1}{9}\)
B là biến cố "Có ít nhất 1 trong 2 con xúc xắc xuất hiện chấm 6", \(P\left(B\right)=\dfrac{11}{36}\)
\(A\cup B\) là biến cố "Tích số chấm xuất hiện trên 2 con xúc xắc chia hết cho 6".
A và B xung khắc nên \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{5}{12}\)Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố A là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố B là biến cố không thể nên biến cố có xác suất là 0.
- Biến cố C là biến cố ngẫu nhiên
Do có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 6 là \(\dfrac{1}{6}\)
Gọi F là biến cố “ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Biến cố \(\overline F \) là “ Cả hai con xúc xắc đều không xuất hiện mặt 6 chấm”.
Ta có \(n\left( \Omega \right) = 36\) và \(\overline F = \left\{ {\left( {i;j} \right),1 \le i;j \le 5} \right\}\) do đó \(n\left( {\overline F } \right) = 25\).
Vậy \(P\left( {\overline F } \right) = \frac{{25}}{{36}}\) nên \(P\left( F \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).