cho a,b,c là các số lẻ . Chứng minh rằng :
(a , b, c) = (\(\frac{a+b}{2}\), \(\frac{b+c}{2}\), \(\frac{c+a}{2}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(a;b;c) =>d lẻ vì các số a,b,c là các số lẻ (1)
(+) a chia hết cho d
(+) b chia hết cho d
=>a+b chia hết cho d (2)
Mặt khác vì a,b là các số lẻ nên a+b sẽ chia hết cho2 (3)
Từ (1);(2) và (3) =>\(\frac{a+b}{2}\) phải chia hết cho d
C/m tương tự ta có \(\frac{b+c}{2};\frac{c+a}{2}\) cũng chia hết cho d
=>đpcm
áp dụng BĐT sacxo nên \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
\(\frac{a^3}{a^2+b^2}-\left(a-\frac{1}{2}b\right)=\frac{\frac{1}{2}b\left(a-b\right)^2}{a^2+b^2}\ge0\Rightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{1}{2}b\)
\(a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\ge0.\)
\(a^2\left(\frac{a-}{b+c}\frac{b}{a+c}\right)+b^2\left(\frac{b}{a+c}\frac{-c}{a+b}\right)+c^2\left(\frac{c-}{a+b}\frac{a}{b+c}\right)\ge0.\)
\(a^2\left(a^2-b^2\right)+b^2\left(b^2-c^2\right)+c^2\left(c^2-a^2\right)\ge0.\)
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2.\) cái này dễ rồi .
Gọi \(d=ƯCLN\left(a;b;c\right)\Leftrightarrow d\) lẻ (do a,b,c lẻ) \(\left(1\right)\)
\(\Leftrightarrow a;b⋮d\)
\(\Leftrightarrow a+b⋮d\left(2\right)\)
Mặt khác :
\(a;b\) lẻ
\(\Leftrightarrow a+b⋮2\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\frac{a+b}{2}⋮d\)
Chứng minh tương tu ta có :
\(\frac{b+c}{2}⋮d;\frac{c+a}{2}⋮d\)
\(\Leftrightarrowđpcm\)