chứng minh rằng n^2+n luôn chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6\)
\(=6\left(n+1\right)\) chia hết cho 6
=>\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho 6
Nếu n chia hết cho 3 thì hiển nhiên đúng
Nếu n k chia hết cho 3 thì n sẽ có 2 dạng là:(x là số nguyên)
n=3x+1 hoặc n=3x+2
n=3x+1 thay vào biểu thức ta được: (3x+1)(6x+3)(3x-1)=3(3x+1)(2x+1)(3x-1) chia hết cho 3
n=3x+2 thay vào:(3x+2)(6x+5)3x chia hết cho 3
Kết luận: với mọi n biểu thức luôn chia hết cho 3
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1+1\right)\)
\(=n\cdot\left(n-1\right)\left(n+1\right)\)
Vì n; n-1; n+1 là 3 số nguyên liên tiếp
=> \(n\left(n-1\right)\left(n+1\right)⋮3\) (1)
Vì n; n-1 là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\) (2)
Từ (1) và (2)
=>\(n\left(n-1\right)\left(n+1\right)⋮6\)
Hay \(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)⋮6\)
Vậy....
CM: A = n2 + n ⋮ 2 \(\forall\) n \(\in\) N
A = n2 + n
A = n(n +1)
Vì n và n + 1 là hai số tự nhiên liên tiếp nên nhất định sẽ có một số chẵn, một số lẻ. mà số chẵn thì luôn chia hết cho 2
Vậy A = n(n+1) ⋮ 2 ∀ n \(\in\) N hay A = n2 + n ⋮ 2 \(\forall\) n \(\in\) N (đpcm)