K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

c)Từ gt suy ra:

\(\frac{1}{1+a}\geq\frac{c}{c+1}+\frac{b}{b+1}\)\( \geq2.\sqrt{\frac{bc}{(c+1)(b+1)}}\)

\(\frac{1}{1+b}\geq \frac{a}{a+1}+\frac{c}{c+1}\)\(\geq 2\sqrt{\frac{ac}{(a+1)(c+1)}}\)

\(\frac{1}{1+c}\geq\frac{a}{a+1}+\frac{b}{b+1}\)\(\geq 2\sqrt{\frac{ab}{(a+1)(b+1)}}\)

Từ 3 BĐT trên suy ra

\((1+a).(1+b).(c+1)\leq \frac{1}{8}.\frac{(a+1).(b+1).(c+1)}{a.b.c}\)\(\Rightarrow abc\leq\frac{1}{8}\)

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Câu a)

Từ giả thiết \(15x^2-7y^2=9\Rightarrow 3|y^2\Rightarrow 3|y\). Đặt \(y=3y_1(y_1\in\mathbb{Z}^+)\)

Phương trình trở thành:

\(15x^2-63y_1^2=9\Leftrightarrow 5x^2-21y_1^2=3\Rightarrow 3|x^2\Rightarrow 3|x\)

Đặt \(x=3x_1(x_1\in\mathbb{Z}^+)\)

\(\text{PT}\Leftrightarrow 45x_1^2-21y_1^2=3\Leftrightarrow 15x_1^2-7y_1^2=1\Rightarrow 3|7y_1^2+1\)

\(\Leftrightarrow 3| y_1^2+1\Leftrightarrow y_1^2\equiv 2\pmod 3\)

Điều này vô lý vì số chính phương chia \(3\) chỉ có thể dư \(0,1\)

Do đó PT vô nghiệm.

NV
6 tháng 3 2019

ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\sqrt{4x-3}-\sqrt{2x-1}+\sqrt{\frac{x+3}{2x-1}}-\sqrt{\frac{x+3}{4x-3}}\ge0\)

\(\Rightarrow\sqrt{4x-3}-\sqrt{2x-1}+\sqrt{x+3}\left(\frac{\sqrt{4x-3}-\sqrt{2x-1}}{\sqrt{4x-3}.\sqrt{2x-1}}\right)\ge0\)

\(\Rightarrow\left(\sqrt{4x-3}-\sqrt{2x-1}\right)\left(1+\frac{\sqrt{x+3}}{\sqrt{4x-3}\sqrt{2x-1}}\right)\ge0\)

\(\Rightarrow\sqrt{4x-3}-\sqrt{2x-1}\ge0\) (do \(1+\frac{\sqrt{x+3}}{\sqrt{4x-3}\sqrt{2x-1}}>0\))

\(\Rightarrow\sqrt{4x-3}\ge\sqrt{2x-1}\)

\(\Rightarrow4x-3\ge2x-1\)

\(\Rightarrow x\ge1\)