tìm x thuộc z để
a) x^2-2x-6 là 1 số chính phương
b) x^2+x+2 là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\)
\(\Rightarrow x^2-2x+1-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-a^2=7\)
\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)
Do: \(x-a-1< x+a-1\) nên:
\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)
Vậy: ...