K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)

b) Ta có : \(\overrightarrow n  = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n  \ne 0} \right){\rm{ ,}}\overrightarrow {HM}  = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM}  = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).

c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Do \(\Delta \) là pháp tuyến của đường tròn (C) tại điểm \({M_o}\) nên \(\Delta \) vuông góc với \(I{M_o}\). Vậy \(\overrightarrow {I{M_o}} \) là vectơ pháp tuyến của đường thẳng \(\Delta \).

b) Tọa độ \(\overrightarrow {I{M_o}}  = \left( {{x_o} - a;{y_o} - b} \right)\)

c) Đường thẳng \(\Delta \)đi qua điểm \({M_o}\)và có vecto pháp tuyến \(\overrightarrow {I{M_o}} \)là: \(\left( {{x_o} - a} \right)\left( {x - {x_o}} \right) + \left( {{y_o} - b} \right)\left( {y - {y_o}} \right) = 0\) 

NV
14 tháng 4 2022

\(\lim\limits_{x\rightarrow x_0}f\left(x\right)=+\infty\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi \(M\left( {x;y} \right)\)

Ta có: \(\overrightarrow {AM}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n  = \left( {a;b} \right)\)

\( M \in \Delta \Leftrightarrow \overrightarrow {AM}  \bot \overrightarrow n \)

Hay \(\overrightarrow {AM} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Hai vectơ \(\overrightarrow u {\rm{ }}\)và \(\overrightarrow {{M_o}M} \)cùng phương với nhau.

b) Xét \(M\left( {x;y} \right)\). Vì cùng phương với  nên có số thực t sao cho \(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }}\)

c) Do \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\) nên:

\(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x - {x_o} = at\\y - {y_o} = bt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\)

Vậy tọa độ điểm M là: \(M\left( {{x_o} + at;{y_o} + bt} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương của hai vecto \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.

b) Ta có: \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\)

Xét điểm \(M\left( {x;y} \right) \in \Delta \). Vì \(\overrightarrow {{M_o}M}  \bot \overrightarrow n \) nên: \(\overrightarrow {{M_o}M} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0 \Leftrightarrow ax + by - a{x_o} + b{y_o} = 0\) 

18 tháng 10 2021

Tìm nghiệm \(x_o\)thôi cũng được, mình đang cần gấp

18 tháng 10 2021

= Tôi không biết

4 tháng 5 2021

Ủa hỏi mỗi hoành độ thôi hở :D?

\(f'\left(x\right)=2x-4\)

Vi \(pttt//d:y=8x+2017\Rightarrow f'\left(x\right)=8\)

\(\Rightarrow2x-4=8\Leftrightarrow x=6\)