Cho tam giác ABC có AB = 40cm, AC = 30cm, BC= 50cm. Kẻ AH vuông góc BC tại H
1) Chứng minh tam giác ABC vuông tại A
2) Gọi S tam giác ABC là diện tích tam giác ABC. Tính diện tích tam giác ABC
3) Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> BH.AH/2+HC.AH/2=SΔABC
=> BH^2.AH+HC^2.AH/2=SΔABC
=> AH.(BH^2+HC)2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/BC = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
a) Diện tích tam giác ABC là:
AB x AC : 2 = 40 x 30 : 2 = 600 (cm2)
b) Diện tích tam giác ABC là:
AH x BC : 2 = AH x 50 : 2 = AH x 25 = 600 (cm2)
=> AH = 600 : 25 = 24 (cm)
Đáp số: a) 600 (cm2)
b) 24 (cm)
tick mình nha
HT
a) Diện tích tam giác ABC là:
AB x AC : 2 = 40 x 30 : 2 = 600 (cm2)
b) Diện tích tam giác ABC là:
AH x BC : 2 = AH x 50 : 2 = AH x 25 = 600 (cm2)
=> AH = 600 : 25 = 24 (cm)
Đáp số: a) 600 (cm2)
b) 24 (cm)
tick cho mình để có động lực nha!
\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{B}chung.\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b.\) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)
c) Do MN song song với AB nên MN vuông góc với AC
Tam giác AMC có 2 đường cao AH, MN suy ra N là trực tâm. Do đó CN vuông góc với AM.
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *
Vậy tam giác ABC vuông tại A
b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2
c, biết mỗi cách tam giác đồng dang :))
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm