so sánh 9/22 và 4/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 và 5/4
1/2<1
5/4>1
\(\Rightarrow\)1/2 < 5/4
1/3 Và 4/9
1/3 = 3/9
Vì 3/9< 4/9 nên 1/3 < 4/95
3/4 = 15/20
7/10= 14/20
Vì 15/20 > 14/20 nên 3/4 > 7/10
22/23 Và 22/33
22/23 và 22/33 có tử chung là 22 mà 23<33\(\Rightarrow\)22/23>22/33
10/9 và 10/7
10/9 và 10/7 có tử chung là 10 mà 9 >3\(\Rightarrow\)10/7 > 10/9
10/3 và 10/7
10/3 và 10/7 có tử chung là 10 mà 3 < \(\Rightarrow\)10/3 > 10/7
tk mình nha !
1/2 < 5/4 , 1/3 < 4/9 , 3/4 > 7/10 , 22/23 = 22/23 , 22/23 < 10/9 , 10/3 > 10/7
\(A=\left(\frac{20}{5}+\frac{27}{9}\right)\times\frac{21}{10}=\left(4+3\right)\times\frac{21}{10}=7\times\frac{21}{10}=\frac{147}{10}\)
\(B=\left(\frac{13}{6}-\frac{3}{8}\right)\times\frac{11}{22}\)
\(B=\left(\frac{52}{24}-\frac{9}{24}\right)\times\frac{11}{22}\)
\(B=\frac{43}{24}\times\frac{1}{2}=\frac{43}{48}\)
Dễ thấy \(A=\frac{147}{10}>1\)
Mà \(B=\frac{43}{48}< 1\)
=> tự so sánh
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
Ta có:
\(12^{44}=\left(3.4\right)^{44}=3^{44}.4^{44}\)
\(9^{22}=\left(3^2\right)^{22}=3^{44}\)
Vì 344=344
Mà 1244=3^44.4^44
Vậy 12^44>9^22
Kiến thức cần nhớ:
Để giải dạng này em cần so sánh G với một tổng của các phân số quen thuộc. Ở đây các mẫu số là bình phương của các số tự nhiên liên tiếp. Vậy ta cần so sánh G với tổng các các phân số mà mỗi mẫu số là tích của hai số tự nhiên liến tiếp.
G = \(\dfrac{1}{4}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{36}\)+...+ \(\dfrac{1}{100}\)
G = \(\dfrac{1}{2\times2}\) + \(\dfrac{1}{3\times3}\) + \(\dfrac{1}{4\times4}\)+ \(\dfrac{1}{5\times5}\) + \(\dfrac{1}{6\times6}\) +...+ \(\dfrac{1}{10\times10}\)
Vì \(\dfrac{1}{2}\) > \(\dfrac{1}{3}\) > \(\dfrac{1}{4}\) >...> \(\dfrac{1}{10}\) ta có:
\(\dfrac{1}{2\times2}\) > \(\dfrac{1}{2\times3}\)
\(\dfrac{1}{3\times3}\) > \(\dfrac{1}{3\times4}\)
........................
\(\dfrac{1}{10\times10}\) > \(\dfrac{1}{10\times11}\)
Cộng vế với vế ta có:
G = \(\dfrac{1}{2\times2}\)+\(\dfrac{1}{3\times3}\)+\(\dfrac{1}{4\times4}\)+...+ \(\dfrac{1}{10\times10}\)> \(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+...+\(\dfrac{1}{10\times11}\)
G > \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ ...+ \(\dfrac{1}{10}\)- \(\dfrac{1}{11}\)
G > \(\dfrac{1}{2}\) - \(\dfrac{1}{11}\) = \(\dfrac{9}{22}\)
Kết luận: G > \(\dfrac{9}{22}\)
1.
a)=1/3-[(-5/4)-5/8]
=1/3-(-15/8)=53/24
b)=5/9:(-3/22)+5/9:(-3/5)
=5/9*22/-3+5/9*5/-3=-110/27+-25/27=5
2
a)Ta có 339<340=920<1120<1121
nên 339<1121
b)Ta có /3,4-x/ lớn hơn hoặc bằng 0 Với mọi x thuộc R
=> -/3,4-x/ bé hơn hoặc bằng 0 Với mọi x thuộc R
=> 0,5-/3,4-x/ bé hơn hoặc bằng 0,5 Với mọi x thuộc R
Dấu = xảy ra khi 3,4-x=0
=>x=3,4
Vậy GTLN của A = 0,5 khi x=3,4
Ta có:
Phân số: \(\frac{9}{22}< 1\)
Phân số: \(\frac{4}{3}>1\)
= > \(\frac{9}{22}< \frac{4}{3}\)
9/22 < 4/3