K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

vì 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 có các số dư khác nhau nên số dư lần lượt là 1;2;3;4

các số đó là: (a+1)+(a+2)+(a+3)+(a+4)

=> 4a+(1+2+3+4)

=> 4a+10

vì 4a chia hết cho 5

   10 cũng chia hết cho 5

nên 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chho 5 có các số dư khác nhau sẽ chia hết cho 5

tk mk nha

20 tháng 7 2017

Do 4 số tự nhiên không chia hết cho 5 và chia cho 5 có các số dư lần lượt 1;2;3;4.

Gọi 4 số tự nhiên đó là (a+1)+(a+2)+(a+3)+(a+4)    ( a thuộc N)

=> 4a+(1+2+3+4)

=> 4a+10

Do 10 chia hết cho 5

=> 4a cũng chia hết cho 5

Vậy 4 số tự nhiên không chia hết cho 5 nhưng khi chia 5 cho tổng các số dư khác nhau của nó sẽ chia hết cho 5

26 tháng 8 2015

**** cho mình 1 cái đi làm cho

26 tháng 8 2015

Phải chia hết cho 5 chứ

10 tháng 10 2015

ta có: 5 số tự nhiên chia cho 5 ra các số dư khác nhau là:

5k+1;5k+2;5k+3;5k+4

ta có:

(5k+1)+(5k+2)+(5k+3)+(5k+4)=5k.4+10 tất nhiên là sẽ chia hết cho 5

3 tháng 9 2015

Gọi 4 số đó là 5k+1; 5k+2; 5k+3; 5k+4

Ta có:

(5k+1)+(5k+2)+(5k+3)+(5k+4) = 5k+1+5k+2+5k+3+5k+4

 = 5k.(1+1+1+1)+(1+2+3+4)

 = 5k.4+10

Mà 5k.4 chia hết cho 5 và 10 chia hết cho 5 => tổng của 4 số tự nhiên không chia hết cho 5 chia hết cho 5

20 tháng 10 2015

số đó chia hết thì tùy thuộc vào số dư

nếu các số dư cộng với nhau chia hết cho 5 thì tổng các số cũng chia hết cho 5

9 tháng 8 2019

Tham khảo nha: Câu hỏi của Yễn Nguyễn

9 tháng 8 2019

Trả lời

bạn có thể tham khảo ở

Câu hỏi tương tự, có nha bạn !

25 tháng 8 2015

Ta có : Số dư khi chia cho 5 là các số dư: 1;2;3;4 (1)

Gọi 4 số đó là: 5k + 1 ; 5p + 2 ;  5q + 3 ; 5r  + 4 

Thay vào (1) ta có:
5k + 1 + 5p + 2 + 5q + 3 + 5r + 4 = 5 x (k+p+q+r) + (1+2+3+4)

                                                 = 5 x (k+p+q+r) + 10 = 5 x (k+p+q+r+2)

Vậy chia hết cho 5

14 tháng 10 2017

cho 4 số tự nhiên không chia hết cho 5 và khi chia cho 5 được những số dư khác nhau. chứng minh rằng tổng của chúng chia hết cho 5

13 tháng 7 2016

Các số tự nhiên không chia hết cho 5 sẽ có dạng : \(5k\pm1;5k\pm2\)  (k thuộc N)

Ta giả sử các số đó là \(a=5k+1,b=5k-1,c=5k-2,d=5k+2\)

\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k-1\right)+\left(5k-2\right)+\left(5k+2\right)=20k\)

Vì 20k chia hết cho 5 nên a + b + c + d chia hết cho 5 (đpcm)

 

13 tháng 7 2016

Gọi 4 số đó lần lượt là a ; b ; c ; d

Đặt:

a = 5n + 1

b = 5n + 2

c = 5n + 3

d = 5n + 4

a + b + c + d

= (5n + 1) + (5n + 2) + (5n + 3) + (5n + 4)

= 20n + 10

=> a + b + c + d \(⋮\) 5

 

12 tháng 7 2016

Các số dư của 4 số ấy do khác nhau nên lần lượt bằng 1; 2; 3; 4.

Số dư của tổng 4 số ấy khi chia cho 5 = 1 + 2 + 3 + 4 = 10 chia hết cho 5.

Nên tổng 4 số ấy chia hết cho 5.