K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Nhận xét

• Nếu ủ là một vectơ chỉ phương của A thì \(k\overrightarrow u \) (\(k \ne 0\))cũng là một vectơ chỉ phương của A.

• Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ chỉ phương của đường thẳng đó.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Nhận xét

• Nếu \(\overrightarrow n \) là một vectơ pháp tuyến của \(\Delta \) thì \(k\overrightarrow n  \ne \overrightarrow 0 \left( {k \ne 0} \right)\)cũng là một vectơ pháp tuyến của \(\Delta \).

• Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của đường thẳng đó.

• Nếu đường thẳng \(\Delta \) có vectơ chỉ phương là \(\overrightarrow u  = \left( {a;b} \right)\) thì vectơ \(\overrightarrow n  = \left( { - b;a} \right)\)là một vectơ pháp tuyến của \(\Delta \).

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1},{\Delta _2}\)  lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \). Khi đó:

a) \({\Delta _1}\) cắt \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

b) \({\Delta _1}\) song song với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc một đường thẳng mà không thuộc đường thẳng còn lại.

c) \({\Delta _1}\) trùng với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc cả hai đường thẳng đó.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Hai vectơ \(\overrightarrow u {\rm{ }}\)và \(\overrightarrow {{M_o}M} \)cùng phương với nhau.

b) Xét \(M\left( {x;y} \right)\). Vì cùng phương với  nên có số thực t sao cho \(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }}\)

c) Do \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\) nên:

\(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x - {x_o} = at\\y - {y_o} = bt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\)

Vậy tọa độ điểm M là: \(M\left( {{x_o} + at;{y_o} + bt} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\) mà \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương nên ta có:

\(\left\{ \begin{array}{l}{x_0} - x = {u_1}\\{y_0} - y = {u_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - {u_1}\\y = {y_0} - {u_2}\end{array} \right.\)

Vậy \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương của hai vecto \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.

b) Ta có: \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\)

Xét điểm \(M\left( {x;y} \right) \in \Delta \). Vì \(\overrightarrow {{M_o}M}  \bot \overrightarrow n \) nên: \(\overrightarrow {{M_o}M} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0 \Leftrightarrow ax + by - a{x_o} + b{y_o} = 0\) 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Xét đường thẳng \(\Delta :x + 2y - 5 = 0\)

Vecto \(\overrightarrow n  = (1;2)\) là một VTPT của \(\Delta \) => A đúng => Loại A

Vecto \(\overrightarrow u  = ( - 2;1)\) là một VTCP của \(\Delta \) => B đúng => Loại B

Đường thẳng \(\Delta \)có hệ số góc \(k =  - \frac{a}{b} =  - \frac{1}{2}\) => D sai => Chọn D

Chọn D.