Cho x = a - x.
Cmr x3+3ax-a3+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+3ax-a^3+1\)
\(=\left(a-1\right)^3+3a\left(a-1\right)-a^3+1\)
\(=a^3-3a^2+3a-1+3a^2-3a-a^3+1=0\)=>đpcm
a+b+c=0 nên a+b=-c
a^3+b^3+c^3
=(a+b)^3-3ab(a+b)+c^3
=(a+b+c)(a^2+2ab+b^2-bc-ac+c^2)-3ab(a+b)
=-3ab(-c)=3abc
(2x-2023)^3+(2020-x)^3+(23-x)^3=0
=>(2020-x)^3+(23-x)^3+[-(2020-x+23-x)^3]=0
=>3(2020-x)(23-x)(2x-2023)=0
=>\(x\in\left\{2020;23;\dfrac{2023}{2}\right\}\)
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Giả sử phương trình có 3 nghiệm x1;x2;x3
Theo hệ thức viet:
\(\left\{{}\begin{matrix}x_1+x_2+x_3=1\\x_1.x_2+x_2.x_3+x_3.x_1=3a\\x_1.x_2.x_3=b\end{matrix}\right.\)
Mà a;b >0=>Phương trình có 3 nghiệm dương
bđt cần cm trở thành:
\(\left(\frac{1}{3x_1}+\frac{1}{3x_2}+\frac{1}{3x_3}\right)^3+27x_1.x_2.x_3\ge28\)
\(VT\ge\frac{1}{x_1x_2x_3}+27x_1x_2x_3=\frac{1}{27x_1x_2x_3}+27x_1x_2x_3+\frac{26}{27x_1x_2x_3}\ge2+26=28\left(x_1x_2x_3\le\frac{\left(x_1+x_2+x_3\right)^3}{27}=\frac{1}{27}\right)\)
Dấu bằng xảy ra khi \(a=\frac{1}{9};b=\frac{1}{27}\)