Một lô hàng có 20 sản phẩm bao gồm 16 chính phẩm và 4 phế phẩm. Chọn ngẫu nhiên 3 sản phẩm.
a) Có bao nhiêu kết quả xảy ra khi chọn ngẫu nhiên 3 sản phẩm?
b) Xác suất của biến cố “Cả 3 sản phẩm được chọn là chính phẩm” bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^6_{20}\)
a) Gọi A là biến cố: "Tất cả đều là chính phẩm."
Ta thấy \(\left|A\right|=C^6_{15}\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{ \left|\Omega\right|}=\dfrac{C^6_{15}}{C^6_{20}}=\dfrac{1001}{7752}\)
b) Gọi B là biến cố: "Tất cả đều là phế phẩm."
Rõ ràng \(\left|B\right|=0\) (vì chỉ có 5 phế phẩm nhưng ta chọn tới 6 sản phẩm nên không thể có chuyện cả 6 sản phẩm được chọn đều là phế phẩm) \(\Rightarrow P\left(B\right)=0\)
c) Gọi C là biến cố: "Có ít nhất 3 chính phẩm."
\(P_i\) là biến cố: "Có đúng \(i\) chính phẩm." \(\left(3\le i\le6\right)\)
Do \(P_i\) đôi một rời nhau và \(C=\cup^6_{i=3}P_i\) nên \(\left|C\right|=\sum\limits^6_{i=3}\left|P_i\right|\)
Ta thấy \(\left|P_i\right|=C^i_{15}.C^{6-i}_5\) \(\Rightarrow\sum\limits^6_{i=3}\left|P_i\right|=\sum\limits^6_{i=3}C^i_{15}.C^{6-i}_5=38220\)
hay \(\left|C\right|=38220\)
Từ đó \(P\left(C\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{38220}{C^6_{20}}=\dfrac{637}{646}\)
Chọn D
Ta có:
Gọi A là biến cố lấy ra 3 sản phẩm trong đó có ít nhất một sản phẩm tốt.
=> A ¯ là biến cố lấy ra 3 sản phẩm không có sản phẩm tốt và
Vậy
Đáp án B
Gọi A là biến cố: “ 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt”
Khi đó là biến cố :”3 sản phẩm lấy ra không có sản phẩm nào tốt”
Ta có:
Suy ra
Đáp án B
Gọi A là biến cố: “ 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt”
Khi đó A ¯ là biến cố :”3 sản phẩm lấy ra không có sản phẩm nào tốt”
Ta có:
Ω = C 10 3 ; Ω A = C 10 3 ⇒ P A ¯ = C 10 3 C 30 3 = 6 203
Suy ra
P A = 1 − P A ¯ = 197 203 .
Lời giải:
Lấy lần 1 và lần 2 đã lấy ra được 1 sản phẩm loại I và 1 sản phẩm loại II, do đó còn $15$ sản phẩm loại I và $3$ sản phẩm loại II (tổng 18 sản phẩm)
Trong lần thứ 3:
Lấy ngẫu nhiên 1 sản phẩm, có $C^1_18=18$ cách chọn
Lấy ngẫu nhiên 1 sản phẩm loại II từ 3 sản phẩm loại II, có $C^1_3=3$ cách chọn
Xác suất để lấy được sản phẩm loại II: $\frac{3}{18}=\frac{1}{6}$
Gọi A là biến cố "sản phẩm chọn được từ lô 2 là loại A"
\(B_1\) là biến cố "viên bi được lấy ra là viên của hộp 1" \(\Rightarrow P\left(B_1\right)=\dfrac{C_5^1}{C_{20}^1}=\dfrac{1}{4}\)
\(B_2\) là biến cố "viên bi được lấy ra là viên bi của hộp 2" \(\Rightarrow P\left(B_2\right)=\dfrac{C_{15}^1}{C_{20}^1}=\dfrac{3}{4}\)
\(P\left(A|B_1\right)=\dfrac{C_3^1}{C_7^1}=\dfrac{3}{7}\)
\(P\left(A|B_2\right)=\dfrac{C_9^1}{C_{15}^1}=\dfrac{3}{5}\)
Xác suất:
\(P\left(A\right)=\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{4}.\dfrac{3}{5}=\dfrac{39}{70}\)
Đáp án C
n ( Ω ) = C 40 3
A : “3 sản phẩm lấy ra có ít nhất 1 sản phẩm tốt”
A : “3 sản phẩm lấy ra không có sản phẩm tốt”
a) Số kết quả xảy ra khi chọn ngẫu nhiên 3 sản phẩm là: \(C_{20}^3\) ( kết quả )
b) Chọn ngẫu nhiên 3 sản phẩm từ 20 sản phẩm ta được một tổ hợp chập 3 của 20. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{20}^3\)( phần tử)
Gọi A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”
Để chọn được cả 3 sản phẩm đều là chính phẩm thì ta phải chọn 3 sản phẩm từ 16 chính phẩm tức là ta được một tổ hợp chập 3 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^3\)( phần tử)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{16}^3}}{{C_{20}^3}} = \frac{{28}}{{57}}\).