Biết y thuộc N và y : 5 dư 4 , y : 6 dư 4 , y : 8 dư 4 ( y chia hết cho 31 và y là số có 3 chữ số lớn nhất )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y chia 5 dư 4 => y - 4 chia hết cho 5
y chia 6 dư 4 => y - 4 chia hết cho 6
y chia 8 dư 4 => y - 4 chia hết cho 8
=> y - 4 chia hết cho 5 , 6 ,8 => y - 4 = 120n
Mà y chia hết cho 31=> 120n + 4 chia hết cho 31
4(30n + 1 ) chia hết cho 31 mà (4,31) = 1
=> 30n + 1 chia hết cho 31
=> 30n + 1 - 31 chia hết 31
=> 30n -30 chia hết cho 31 => 30(n-1) chia hết 31
=> n - 1 chia hết 31
n = 31p + 1
Mà y < 999 => p = 0 => n = 1 => y = 120.1 + 4 = 124
Gọi số cần tìm là a . ( a \(\in\)N ; a \(\le\)999 )
Theo đề bài , ta có :
a : 8 dư 7 \(\Rightarrow\)( a + 1 ) \(⋮\)8 .
a : 31 dư 28 \(\Rightarrow\)( a + 3 ) \(⋮\)28
Ta thấy : ( a + 1 ) + 64 \(⋮\)8 = ( a + 3 ) + 62 \(⋮\) 31
\(\Rightarrow\)a + 65 \(⋮\)8 và 31
Mà ( 8 ; 31 ) = 1
\(\Rightarrow\)a + 65 \(⋮\) 248
Vì a \(\le\)999 \(\Rightarrow\)a + 65 \(\le\)1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng là số tự nhiên lớn nhất thỏa mãn \(\frac{a+56}{248}=4\)
\(\Rightarrow a=927\)
Vậy số cần tìm là \(927\)
1. Câu hỏi của buikhanhphuong - Toán lớp 6 - Học toán với OnlineMath
1.
g/ 2xy chia hết cho 4 và 11.
Để 2xy chia hết cho 4 thì xy chia hết cho 4.
xy c {12 ; 16 ; 20 ; ... ; 96}
- 2xy = 212 không chia hết cho 11.
- 2xy = 216 không chia hết cho 11.
- 2xy = 220 chia hết cho 11.
Vậy, 2xy = 220.
5/
c) a38 chia hết cho 6
6 = 2 . 3
Để a38 chia hết cho 6 thì a38 chia hết cho 2 và 3.
a38 đã thoả mãn điều kiện chia hết cho 2 vì tận cùng của số đó là số 8.
Ta có: a38 = a + 3 + 8 = a + 11 => a c {1 ; 4 ; 7}
Vậy, a38 c {138 ; 438 ; 738}
1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8
2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6 với mọi x; y => (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10
=> Không tồn tại x; y để thỏa mãn
3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5
mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2
4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4
=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}
5) Gọi số đó là n
n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3
n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5
=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8 \(\in\) B(15)
Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15}
=> có (667 - 68) : 1 + 1 = 600 số
6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)
=> có 4 cặp x; y thỏa mãn
n chia 5 dư 2, chia 7 dư 4=>n+3 chia hết cho 5;7=>n+3 thuoc BC(5,7)
ta có
5=5
7=7
=>BCNN(5,7)=5.7=35
=>BC(5,7)={0;35;70;105;140;....}
=> n+3 thuộc {0;35;70;105;140....}
=>n thuộc {32;67;102;137;....}
mà n là số tự nhiên nhỏ nhất.
=>n=102
vay...
Vì ƯCLN(x,y) = 5 \(\Rightarrow\hept{\begin{cases}x=5.m\\y=5.n\end{cases}}\)(m;n \(\in\)N và ƯCLN(m,n) = 1)
Ta có: x + y = 20
=> 5.m + 5.n = 20
=> 5.(m + n) = 20
=> m + n = 20 : 5
=> m + n = 4
Mà (m;n) = 1 \(\Rightarrow\hept{\begin{cases}m=1\\n=3\end{cases}}\)hoặc\(\hept{\begin{cases}m=2\\n=2\end{cases}}\)hoặc\(\hept{\begin{cases}m=3\\n=1\end{cases}}\)
Các cặp giá trị (a;,b) tương ứng là: (5,15) ; (10,10) ; (15,5)