Ta đã biết 1 inch (kí hiệu là in) là 2,54 cm. Màn hình của một chiếc ti vi có dạng hình chữ nhật với độ dài đường chéo là 32 in, tỉ số giữa chiều dài và chiều rộng của màn hình là 16: 9. Tìm một giá trị gần đúng (theo đơn vị inch) của chiều dài màn hình ti vi và tìm sai số tương đối, độ chính xác của số gần đúng đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường chéo là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)\simeq55,1\left(inch\right)\)
Ta có góc của màng hình tivi là góc vuông nên đường cheo của tivi là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)\)
Đổi: \(24\sqrt{34}\left(cm\right)\approx55\left(inch\right)\)
Vậy: ...
Ta có 21 in ≈ 21. 2,54 ≈ 53,34 cm.
Làm tròn đến hàng đơn vị ta được 53cm. (chữ số bỏ đi thứ 2 là 3 < 5)
Vậy đường chéo màn hình của chiếc tivi 21 in dài khoảng 53cm.
Đường chéo chiếc TV dài
\(2,45.21=51,45\left(cm\right)\)
Vậy đường chéo chiếc TV dài 51 , 45 cm
Đường chéo màn hình của chiếc TV dài:
21 inch x 2,54= 53, 34( cm)
Vậy Đường chéo màn hình của chiếc TV dài: 53,34 cm
Gọi chiều dài, chiều rộng lần lượt là a(inch) và b(inch)
Chiều dài, chiều rộng lần lượt tỉ lệ với 16 và 9 nên a/16=b/9
Đặt \(\dfrac{a}{16}=\dfrac{b}{9}=k\)
=>a=16k; b=9k
Kích thước đường chéo là 55inch nên \(a^2+b^2=55^2\)
=>\(\left(16k\right)^2+\left(9k\right)^2=55^2\)
=>\(256k^2+81k^2=55^2\)
=>\(k^2=\dfrac{3025}{337}\)
=>\(k=\dfrac{55}{\sqrt{337}}\)
=>\(a=16\cdot\dfrac{55}{\sqrt{337}}=\dfrac{880}{\sqrt{337}};b=9\cdot\dfrac{55}{\sqrt{337}}=\dfrac{495}{\sqrt{337}}\)
=>\(a=\dfrac{880}{\sqrt{337}}inch\simeq121,76\left(cm\right)\)
\(b=\dfrac{495}{\sqrt{337}}inch=68,49\left(cm\right)\)
Đường chéo là cạnh huyền.
402+302=2500=502
=> Đường chéo màn hình là 50 inch.
=> Ti vi thuộc loại 50inch.
(Ti vi này cũng chưa quá to đâu nhỉ??)
Ta có: Theo định lí Pitago: AB2 + AC2 =BC2
=> 402+302 =BC2
=> 2500 =BC2
=> BC=50(inch)Vậy tivi đó thuộc loại 50 inch
Ta có:
23² + 40² = 2129
Độ dài đường chéo màn hình:
√2129 : 2,54 ≈ 18,2 (inch)
vậy đường chéo màn hình của chiếc ti vi này dài khoảng:
21 . 2,54 = 53,34 ( cm )
vậy khoảng 53,34 cm
Đường chéo màn hình của chiếc ti vi này dài khoảng số cm là:
21 x 2,54 = 53,34 (cm)
Vậy đường chéo màn hình của chiếc ti vi này dài khoảng 53,34 cm
+) Gọi x là chiều dài của màn hình ti vi
y là chiều rộng của màn hình ti vi
+) Ta có hệ phương trình:
\( \Rightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = {32^2}\\\frac{x}{y} = \frac{{16}}{9}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \approx 27,890417\\y \approx 15,688359\end{array} \right.\) . Vậy chiều dài của ti vi là: 27,890417 (in)
+) Nếu lấy giá trị gần đúng của x là 27,89 thì: \(27,89 < x < 27,895\)
Suy ra: \(\left| {x - 27,89} \right| < 27,895 - 27,89 = 0,005\)
Vậy độ chính xác của số gần đúng là 0,005
+) Sai số tương đối của số gần đúng là: \(\delta = \frac{{0,005}}{{\left| {27,89} \right|}} = 0,018\% \)