\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{3240}\)Tính nhanh
Giải đầyđủ nha mình cần gấp lắm hôm nay phải có nhoa yêu mấy bạn <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{864.48-432.96}{864.48.432}=\frac{864.48-432.2.48}{864.48.432}=\frac{864.48-864.48}{864.48.432}\)
\(=\frac{0}{864.48.432}=0\)
ta có tử số= 864.48-432.96=432.2.48-432.96=432.96-432.96=0
vậy phân thức đã cho có giá trị bằng 0
\(\frac{16\cdot17-5}{16\cdot16+11}\)
\(=\frac{16\cdot\left(16+1\right)-5}{16\cdot16+11}\)
\(=\frac{16\cdot16+\left(16-5\right)}{16\cdot16+11}\)
\(=\frac{16\cdot16+11}{16\cdot16+11}\)
\(=1\)
=1/15+1/21+1/28+......+1/190
=2/2x(1/15+1/21+1/28+...+1/190)
=2/30+2/42+2/56+....+2/380
=2/5x6+2/6x7+2/7x8+......+2/19x20
=2x(1/5-1/6+1/6-1/7+1/7-1/8+....+1/19-1/20)
=2x(1/5-1/20)
=2x3/20
=3/10
a)A=1/10+1/15+...+1/120
=2(1/20+1/30+...+1/240)
=2(1/4*5+1/5*6+...+1/15*16)
=2*(1/4-1/5+1/5-1/6+...+1/15-1/16)
=2*[(1/4-1/16)+(1/5-1/5)+...+(1/15-1/15)]
=2*[(4/16-1/16)+0+...+0]
=2*3/16=3/8
b) B=1+1/3+1/6+...+1/1225
=2(1/2+1/6+1/12+...+1/2450)
=2(1/1*2+1/2*3+...+1/49*50)
=2*[1-1/2+1/2-1/3+...+1/49-1/50]
=2*[(1-1/50)+(1/2-1/2)+...+(1/49-1/49)]
=2*[(50/50-1/50)+0+...+0]
=2*49/50=49/25
a,\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)\)
\(\frac{1}{2}A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\)
\(\frac{1}{2}A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\)
\(\frac{1}{2}A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}A=\frac{1}{4}-\frac{1}{16}\)\(\frac{1}{2}A=\frac{3}{16}\)suy ra \(A=\frac{3}{16}:\frac{1}{2}=\frac{3}{8}\)
B thì cậu có thể làm nhiều cách
Đặt X=phép tính trên
Ta có X=X x 1/2 :1/2
X=(1/6+1/12+...+1/6480):1/2
X=(1/2x3+1/3x4+...+1/80x81):1/2
X=(1/2-1/3+1/3-1/4+...+1/80-1/81):1/2
X=(1/2-1/81):1/2
Đến đây bạn tự tính nhé!!!
Đặt: A=...
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{6480}\)
\(\frac{A}{2}=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{80x81}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{80}-\frac{1}{81}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{81}=\frac{79}{162}\) => A=\(\frac{79}{81}\)