cho tứ giác ABCD cso A=125 độ , góc B=55 độ . CMR 2 đường phân giác của góc C và góc D vuông góc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)
Tổng 4 góc trong 1 tứ giác là 360 độ nên góc A + góc B + góc BCD + góc ADC = 360 độ
125 độ + 55 độ + góc BCD + góc ADC = 360 độ
góc BCD + góc ADC = 180 độ
Gọi giao điểm 2 đường p/g của góc D và C là O
CO là tia phân giác của góc BCD (gt) nên góc OCD = 1/2 góc BCD
DO là tia phân giác của góc BDC (gt) nên góc ODC = 1/2 góc ADC
Áp dụng định lí tổng 3 góc trong 1 tam giác vào tam giác OCD, ta có:
góc OCD+ góc ODC + góc DOC =180 độ
1/2 ( góc BCD + góc ADC) + góc DOC = 180 độ
1/2 . 180 độ + góc DOC = 180 độ
90 độ + góc DOC = 180 độ
góc DOC = 90 độ
Vậy 2 đường phân giác của góc D và C vuông góc với nhau.
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)