K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2023

Hhjj

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = 5!\)

a) Gọi biến cố A “Nhân và Tín đứng cạnh nhau” là biến cố đối của biến cố “Nhân và Tín không đứng cạnh nhau”

Số kết quả thuận lợi cho A là: \(n(A) = 2!.3!{.2^3}\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{2!.3!{{.2}^3}}}{{5!}} = \frac{4}{5}\)

Vậy xác suất của biến cố “Nhân và Tín không đứng cạnh nhau” là \(1 - \frac{4}{5} = \frac{1}{5}\)

b) Gọi biến cố A “Trí đứng ở đầu hàng” là biến cố đối của biến cố “Trí không đứng ở đầu hàng” 

Số kết quả thuận lợi cho A là: \(n(A) = 4!.2\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)

Vậy xác suất của biến cố “Nhân và Tín không đứng cạnh nhau” là \(1 - \frac{2}{5} = \frac{3}{5}\)

22 tháng 8 2023

tham khảo

A là biến cố "Cường đứng đầu hàng", \(P\left(A\right)=\dfrac{6!.C^1_2}{7!}=\dfrac{2}{7}\)

B là biến cố "Trọng đứng đầu hàng", \(P\left(B\right)=\dfrac{6!.C^1_2}{7!}=\dfrac{2}{7}\)

AB là biến cố "Trọng và Cường cùng đứng đầu hàng" \(P\left(AB\right)=\dfrac{2!.5!}{7!}=\dfrac{1}{21}\)

\(A\cup B\) 

 là biến cố "Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng"
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\right).P\left(B\right)=\dfrac{11}{21}\)

22 tháng 8 2023

THAM KHẢO:

A là biến cố "Cường đứng đầu hàng", P(A)=\(\dfrac{6!.C\dfrac{1}{2}}{7!}=\dfrac{2}{7}\)

B là biến cố "Trọng đứng đầu hàng", P(B)=\(\dfrac{6!.C\dfrac{1}{2}}{7!}=\dfrac{2}{7}\)

AB là biến cố "Trọng và Cường cùng đứng đầu hàng" P(AB)=\(\dfrac{2!.5!}{7!}=\dfrac{1}{21}\)

A∪B là biến cố "Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng"

P(A∪B)=P(A)+P(B)−P(A).P(B)=\(\dfrac{11}{21}\)

23 tháng 6 2017

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

3 tháng 10 2019



18 tháng 12 2018

Đáp án B

 

30 tháng 5 2019

HD: Xếp 10 học sinh thành 1 hàng ngang có:

Gọi A là biến cố: “Hàng ngang không có 2 bạn nữ nào đứng cạnh nhau”

Sắp xếp 5 bạn nam thành 1 hàng có: 5! cách sắp xếp, khi đó có 6 vị trị để xếp 5 bạn nữ xen kẽ để không có hai bạn nữ đứng cạnh nhau (6 vị trí bao gồm 2 vị trí đầu và cuối và 4 vị trí giữa 2 bạn nam)

1 tháng 6 2018

Cách 1:

n ( Ω ) = 10 !

Bước 1: Xếp 5 bạn nữ có: 5! Cách

Bước 2: Xếp 5 bạn nam vào xen giữa 4 khoảng trống của 5 bạn nữ và hai vị trí đầu hàng. Có hai trường hợp sau

+) TH1: Xếp 4 bạn nam vào 4 khoảng trống giữa 5 bạn nữ, bạn nam còn lại có hai lựa chọn:

Xếp vào hai vị trí đầu hàng. Trường hợp này có A 5 4 . 2  cách

+) TH2:

- Chọn một khoảng trống trong 4 khoảng trống giữa hai bạn nữ để xếp hai bạn nam có C 4 1  cách

- Chọn hai bạn nam trong 5 bạn nam để xếp vào vị trí đó có A 5 2  cách

- Ba khoảng trống còn lại xếp còn lại ba bạn nam còn lại có 3! Cách

Trường hợp này có C 4 1 . A 5 2 . 3 !  cách

Vậy có tất cả 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! )  cách

Vậy xác suất là:  P = 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! ) 10 ! = 1 42

Cách 2:

n ( Ω ) = 10 !

- Xếp 5 bạn nam có 5! Cách

- Xếp 5 bạn nữ xen vào giữa 4 khoảng trống và 2 vị trí đầu hàng có A 6 5  cách

Vậy 5 ! . A 6 5  cách

Vậy P = 5 ! . A 6 5 10 ! = 1 42

Chọn đáp án B.

 

7 tháng 9 2019

Chọn B

Số phần tử của không gian mẫu là 

Sắp 5 học sinh nam thành một hàng ngang, có 5! cách (tạo ra  khoảng trống).

Chọn 3 khoảng trống trong 6 khoảng trống để xếp 3 nữ, có C 6 3  cách chọn. Khi đó, số cách xếp 3 bạn nữ là  C 6 3 .3! cách.

Vậy xác suất cần tìm là 

12 tháng 4 2017

Đáp án B

Gọi a 1 , a 2 , a 3  là 3 ví trí chọn 3 người ⇒ 1 ≤ a 1 < a 2 < a 3 ≤ 12  

Theo bài ra ta có a 1 < a 2 − 1 a 2 < a 3 − 1 ⇒ 1 ≤ a 1 < a 2 − 1 < a 3 − 2 ≤ 10  

⇒  Có C 10 3  cách chọn bộ ba vị trí a 1 ; a 2 − 1 ; a 3 − 2  

⇒  Có C 10 3  cách chọn bộ ba vị trí thỏa mãn yêu cầu bài toán

Vạy xác suất cần tính là  P = C 10 3 C 12 3 = 6 11

23 tháng 4 2019

Đáp án B

Có  n ( Ω ) = C 12 3

Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c

Theo giả thiết ta có: a < b < c, b – a > 1, c – b > 1,  a ,   b ,   c ∈ { 1 ,   2 , . . . , 12 } .