Tìm x, y:
\(x^2+2x+y^2-6y+10=0\)\(0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+2x+y^2-6y+10=0
(x^2+2x+1)+(y^2-6y+9)=0
(x+1)^2+(y-3)^2=0
=>x+1=0; y-3=0
x=-1, y=3
\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
vậy \(x=-1;y=-3\)
\(x^2+y^2-2x+6y+10=0\)
\(\Leftrightarrow x^2-2x+1+y^2+6y+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
f, x2+y2-2x+6y+10=0
<=>(x2-2x+1)+(y2+6y+9)=0
<=>(x-1)2+(y+3)2=0
Mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
g, x2+y2+1=xy+x+y
<=>2(x2+y2+1)=2(xy+x+y)
<=>2x2+2y2+2=2xy+2x+2y
<=>2x2+2y2+2-2xy-2x-2y=0
<=>(x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)=0
<=>(x-y)2+(x-1)2+(y-1)2=0
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}\Rightarrow}x=y=1}\)
h, 5x2-2x(2+y)+y2+1=0
<=>5x2-4x-2xy+y2+1=0
<=>(4x2-4x+1)+(x2-2xy+y2)=0
<=>(2x-1)2+(x-y)2=0
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}\Rightarrow\left(2x-1\right)^2+\left(x-y\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=y\end{cases}\Rightarrow}x=y=\frac{1}{2}}\)
a, (x^2 -2x+1)+(y^2 +6y+9) =0
(x-1)^2 +(y+3)^2 =0
Do đó: x-1=0 và y+3=0
Vậy x=1 và y=-3
b, x^2 +y^2 +1=xy+x+y
2x^2 +2y^2 +2=2xy+2x+2y
2x^2 +2y^2 -2xy-2x-2y +2=0
(x^2 -2x+1)+(y^2 -2y+1)+ (x^2 +y^2 -2xy)=0
(x-1)^2 +(y-1)^2 +(x-y)^2 =0
Suy ra: x-1=0, y-1=0 và x-y=0
Vậy x=1,y=1
c,5x^2 - 4x-2xy+y^2 +1=0
(4x^2 -4x+1)+(x^2 -2xy+y^2 )=0
(2x-1)^2 +(x-y)^2 =0
Do đó: 2x-1 =0 và x=y suy ra: x=0,5 và x=y
Vậy x=y=0,5
\(x^2+2x+y^2-6y-10=0\)
\(x^2+2x+1+y^2-6x+9=10\)
\(\left(x+1\right)^2+\left(y-3\right)^2=0\)
\(\left(x+1\right)^2=\left(y-3\right)^2=0\)
\(x+1=y-3=0\)
Vậy \(x=-1;y=3\)
\(x^2\)\(+2x+y^2\)\(-6y-10=0\)
\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)
\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)
\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)
\(x+1=y-3=0\)
Vậy: \(x=-1;y=3\)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
\(x^2+2x+y^2-6y+10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)