Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)
\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)
Ta có:
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\)
\(\Rightarrow y=1\)
Thế vào pt ban đầu: \(25^x-5^x=20\)
Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow5^x=5\Rightarrow x=1\)
Để 1x5y chia hết cho 2 thì y = 0 , 2 , 4 , 6 , 8
Để 1x5y chia hết cho 5 thì y = 0 , 5
=> y = 0
Để 1x5y chia hết cho 3 thì 1 + x + 5 + 0 = 6+ x chia hết cho 3
=> x = 0 , 3 ,6 ,9
Để 1x5y chia hết cho 6 thì 1 + x + 5 + 0 = 6+x chia hết cho 6
=> x = 0 ; 6
Để 1x5y chia hết cho 9 thì 1 + x + 5 + 0 = 6 + x chia hết cho 9
=> x = 3
=> Ko tồn tại x
\(\Leftrightarrow x^2y^2+22xy+141=4\left(x^2+6xy+9y^2\right)+7\left(x+3y\right)\)
\(\Leftrightarrow\left(xy+11\right)^2+20=4\left(x+3y\right)^2+7\left(x+3y\right)\)
\(\Leftrightarrow16\left(xy+11\right)^2+320=64\left(x+3y\right)^2+112\left(x+3y\right)\)
\(\Leftrightarrow\left(4xy+44\right)^2+369=\left(8x+24y+7\right)^2\)
\(\Leftrightarrow\left(8x+24y-4xy-37\right)\left(8x+24y+4xy+51\right)=369\)
Pt ước số
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
Anh/ chị viết rõ đề bằng công thức toán được không ạ?
Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?
\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?
Bài 4
Số giấy vụn khối 2 thu được là:
\(246-18=228\left(kg\right)\)
Số giấy vụn của khối 3 thu được là:
\(\dfrac{246+228}{2}=237\left(kg\right)\)
Trung bình mỗi khối thu được là:
\(\dfrac{246+228+237}{3}=237\left(kg\right)\)
Vậy.....
Bài 4 : Bài giải
Khối 2 thu được số kg giấy vụn là :
246 - 18 = 228 ( kg )
Khối 3 thu được số kg giấy vụn là :
( 246 + 228 ) : 2 = 237 ( kg )
Trung bình mỗi ngày thu được kg giấy vụn là :
( 246 + 228 + 237 ) : 3 = 237 ( kg )
Đáp số : 237 kg giấy vụn
Bài 5 Lười làm thông cảm :))
Bổ sung thêm \(x,y\in Z\) thì mới làm đc
\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\\ \Leftrightarrow\left(x-2\right)\left(x+y-2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
Ta thấy \(x+y-2>x-2;\forall x,y\in Z\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x+y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(x^2+2y^2-2xy+4y+3< 0\)
\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)
Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)
\(\Rightarrow x=y=-2\)
Vậy: ....
Cảm ơn anh/chị/bạn nhiều ạ!