K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta thấy phương trình có dạng \(a{x^2} + b{y^2} = 1\) nên phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) là phương trình của đường elip

Từ phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)

Từ phương trình chính tắc ta có: \(a = \frac{1}{2},b = \frac{1}{4} \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt 3 }}{4}\)

Suy ra tiêu điểm của elip này là \({F_1}\left( { - \frac{{\sqrt 3 }}{4};0} \right)\) và \({F_2}\left( {\frac{{\sqrt 3 }}{4};0} \right)\)

b) Ta thấy phương trình có dạng \(a{x^2} - b{y^2} = 1\) nên phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) là phương trình của đường hypebol

Từ phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1\)

Từ phương trình chính tắc ta có: \(a = 3,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{3^2} + {6^2}}  = 3\sqrt 5 \)

Suy ra tiêu điểm của hypebol này là \({F_1}\left( { - 3\sqrt 5;0} \right)\) và \({F_2}\left( {3\sqrt 5;0} \right)\)

c) Phương trình \(({C_3}):x = \frac{1}{8}{y^2}\) có dạng \({y^2} = ax\) nên phương trình này là phương trình của parabol

Ta có phương trình chính tắc là \({y^2} = 8x\)

Từ phương trình chính tắc ta có: \(2p = 8 \Rightarrow p = 4\)

Suy ra tiêu điểm là \(F(2;0)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đây là một parabol. Tiêu điểm của parabol có tọa độ là: \(F\left({\frac{9}{2};0} \right)\).

b) Đây là một elip. Tiêu điểm của elip có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} - {b^2}} ;0} \right) = \left( { - \sqrt {39} ;0} \right)\\{F_2}\left( {\sqrt {{a^2} - {b^2}} ;0} \right) = \left( {\sqrt {39} ;0} \right)\end{array} \right.\)

c) Đây là một hyperbol. Tiêu điểm của hypebol có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} + {b^2}} ;0} \right) = \left( { - 5;0} \right)\\{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right) = \left( {5;0} \right)\end{array} \right.\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Vậy ta được \(M\left(-1;1\right)\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8 \)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)

Độ dài trục lớn 20

Độ dài trục nhỏ 12

b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{5^2} - {4^2}}  = 3\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)

Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)

Độ dài trục lớn 10

Độ dài trục nhỏ 8

c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{4^2} - {1^2}}  = \sqrt {15} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục lớn 8

Độ dài trục nhỏ 2

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{8^2} + {6^2}}  = 10\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)

Độ dài trục thực 16

Độ dài trục ảo 12

c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {1^2}}  = \sqrt {17} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 2

d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)

Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)

Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)

 

a: 

loading...

b: tọa độ A là;

-x+5=4x và y=4x

=>x=1 và y=4

Tọa độ B là;

-x+5=-1/4x và y=-1/4x

=>-3/4x=-5 và y=-1/4x

=>x=5:3/4=5*4/3=20/3 và y=-1/4*20/3=-5/3

=>B(20/3;-5/3)

c: O(0;0); A(1;4); B(20/3;-5/3)

\(OA=\sqrt{1^2+4^2}=\sqrt{17}\)

\(OB=\sqrt{\left(\dfrac{20}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2}=\dfrac{5\sqrt{17}}{3}\)

\(AB=\sqrt{\left(\dfrac{20}{3}-1\right)^2+\left(-\dfrac{5}{3}-4\right)^2}=\dfrac{\sqrt{818}}{3}\)

\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-8}{17}\)

=>góc AOB tù

=>ΔOAB tù

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(a = 3,b = 4 \Rightarrow c = \sqrt {{3^2} + {4^2}}  = 5\)

Vậy tiêu điểm của (E) là: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

b) Ta có: \(a = 6;b = 5 \Rightarrow c = \sqrt {{6^2} + {5^2}}  = \sqrt {61} \)

Vậy tiêu điểm của (E) là: \({F_1}\left( { - \sqrt {61} ;0} \right),{F_2}\left( {\sqrt {61} ;0} \right)\)