Cho tam giác ABC có AB = 6cm, AC = 10cm, độ dài đường trung tuyến AM là 4cm. Tính diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia AM lấy I sao cho AM = MI => AI = 8 cm
Ta có tứ giác ABIC có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên ABIC là hình bình hành
=> AB = IC = 6 cm. Xét tam giác ACI có AC^2 = AI2 + CI2
Nên tam giác ACI vuông tại I. Ta có S(ABIC) = 2 S(AIC) = AI . CI = 48 (cm2)
suy ra S(ABC) = 1/2 S(ABIC) = 24 (cm2)
a: Sửa đề: BC=10cm và ΔABC vuông tại A
\(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
b: Kẻ AH vuông góc BC
\(S_{ABM}=\dfrac{1}{2}\cdot AH\cdot BM\)
\(S_{ACM}=\dfrac{1}{2}\cdot AH\cdot CM\)
mà BM=CM
nên \(S_{ABM}=S_{ACM}\)
a, Diện tích tam giác ABC là :
S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6]
= 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )
=> S ABC = 25,87228247 (cm2)
Tk mk nha
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC
Sai đề còn đăng :)))
sao bn biết sai đề