Trong mặt phẳng Oxy cho điểm \(S(x;y)\) di động trên đường thẳng \(d:12x - 5y + 16 = 0\). Tính khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của
Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n( Ω ) = 101 x 11
Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y ≤ 90”.
Vì
Vậy xác suất cần tính là
Đáp án D.
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n Ω = 101 × 11.
Vì x ∈ 0 ; 100 ; y ∈ 0 ; 10 và x + y ≤ 90
⇒ y = 0 → x = 0 ; 1 ; 2 ; ... ; 90 y = 1 → x = 0 ; 1 ; 2 ; ... ; 89 ... y = 10 → x = 0 ; 1 ; 2 ; ... ; 80 .
Khi đó có 91 + 90 + ... + 81 = 946 cặp x ; y thỏa mãn.
Vậy xác suất cần tính là:
P = n ( X ) n Ω = 946 101 × 11 = 86 101 .
Đáp án D
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là
n Ω = 101 x 11
Khi đó có 91 + 90 + . . . + 81 = 946 cặp (x;y) thỏa mãn
Vậy xác suất cần tính là
Chọn đáp án D.
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n(Ω)=101x11
Vì x ϵ [0;100];y ϵ [0;10] và x+y ≤90 ⇒ y = 0 → x = 0 ; 1 ; 2 ; . . . ; 90 y = 1 → x = 0 ; 1 ; 2 ; . . . ; 89 . . . y = 10 → x = 0 ; 1 ; 2 ; . . . ; 80
Khi đó có 91 + 90 + … + 81 = 946 cặp (x;y) thỏa mãn.
Vậy xác suất cần tính là P=n(X)/n(Ω)=86/101
Điểm S nằm trên đường thẳng d , nên khi S di động trên đoạn thẳng d thì SM ngắn nhất khi \(SM \bot d\)
Nên khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là khoảng cách từ điểm \(M(5;10)\) đến d
Khoảng cách đó là: \(d\left( {M,d} \right) = \frac{{\left| {12.5 - 5.10 + 16} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)
Vậy khi S di động trên đường thẳng d thì khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là 2.