K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

17 tháng 7 2018

Ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\)

\(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

Ủng hộ nha

NV
18 tháng 11 2018

\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

\(\Leftrightarrow\dfrac{\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)

\(\Leftrightarrow\dfrac{16-2x+x^2-9+2x-x^2}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)

\(\Leftrightarrow\dfrac{7}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\Leftrightarrow\dfrac{7}{A}=1\Rightarrow A=7\)

2 tháng 1 2019

Có: \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2+15}-\sqrt{\left(x-1\right)^2+8}=1\)

\(\Leftrightarrow2\left(x-1\right)^2+23-2\sqrt{\left(x-1\right)^4+23\left(x-1\right)^2+120}=1\)

Đặt \(t=\left(x-1\right)^2\left(t\ge0\right)\)

\(\Rightarrow2t+23-2\sqrt{t^2+23t+120}=1\)

\(\Leftrightarrow t+11=\sqrt{t^2+23t+120}\)

\(\Leftrightarrow t^2+22t+121=t^2+23t+120\)

\(\Leftrightarrow t=1\left(TM\right)\)

\(\Rightarrow x\in\left\{0;2\right\}\)

Thay x=0 vào A, ta có:

\(A=\sqrt{16-2.0+0^2}+\sqrt{9-2.0+0^2}=7\)

Thay x=2 vào A, ta có:

\(A=\sqrt{16-2.1+1^2}+\sqrt{9-2.1+1^2}=\sqrt{15}+2\sqrt{2}\)

2 tháng 1 2019

Ta có \(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=16-2x+x^2-\left(9-2x+x^2\right)=16-2x+x^2-9+2x-x=7\Leftrightarrow\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=7\Leftrightarrow1.A=7\Leftrightarrow A=7\)

26 tháng 10 2021

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

 

 

24 tháng 9 2021

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

18 tháng 10 2021

\(a,ĐK:x\ge\dfrac{5}{2}\\ PT\Leftrightarrow2x-5=4\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\\ b,PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\le4\\ PT\Leftrightarrow\left|x-8\right|=4-x\\ \Leftrightarrow\left[{}\begin{matrix}x-8=4-x\left(x\ge8\right)\\8-x=4-x\left(x\le8\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\left(trái.vs.ĐK\right)\\0x=4\left(ktm\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

18 tháng 10 2021

a) \(\sqrt{2x-5}=2\)

\(\Leftrightarrow\) \(\sqrt{2x-5}^2=2^2\)

\(\Leftrightarrow\) \(2x-5=4\)

\(\Leftrightarrow\) 2x = 9

\(\Leftrightarrow\) x = \(\dfrac{9}{2}\)

 Chúc bạn học tốt

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)

NV
25 tháng 11 2019

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)

\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)

\(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)

Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)

\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:

\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)

\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)

\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)

NV
25 tháng 11 2019

c/ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)

\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:

\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

\(\Rightarrow x=3\)