Hai người cùng kéo một con thuyền với hai lực \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\overrightarrow {{F_2}} = \overrightarrow {OB} \) có độ lớn lần lượt là 400 N, 600 N (hình 8). Cho biết góc giữa hai vectơ là \({60^\circ }\). Tìm độ lớn của vectơ hợp lực \(\overrightarrow F \) là tổng của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Dựng hình bình hành ABCD với hai cạnh là hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) như hình vẽ
Ta có:
\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {AD} + \overrightarrow {AB} = \overrightarrow {AC} \Rightarrow \left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)
Xét \(\Delta ABC\) ta có:
\(BC = AD = \left| {\overrightarrow {{F_1}} } \right| = 3\;,AB = \;\left| {\overrightarrow {{F_2}} } \right| = 2\;.\)
\(\widehat {ABC} = {180^o} - \widehat {BAD} = {180^o} - {120^o} = {60^o}\)
Theo định lí cosin ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\\ \Leftrightarrow A{C^2} = {2^2} + {3^2} - 2.2.3.\cos {60^o}\\ \Leftrightarrow A{C^2} = 7\\ \Leftrightarrow AC = \sqrt {7} \end{array}\)
Vậy \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \sqrt {7} \)
Chọn hệ trục tọa độ Oxy như hình vẽ
Ta có: \(\overrightarrow {{F_1}} = \left( {1500;0} \right)\)
Do \(\;\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_2}} } \right) = 30^\circ \) nên tọa độ của \(\overrightarrow {{F_2}} \)là: \(\overrightarrow {{F_2}} = \left( {600.\cos {{30}^o};600.\sin {{30}^o}} \right) = \left( {300\sqrt 3 ;300} \right)\)
Do \(\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_3}} } \right) = {45^o}\) nên tọa độ của \(\overrightarrow {{F_3}} \)là: \(\overrightarrow {{F_3}} = \left( {800.\cos {{45}^o}; - 800.\sin {{45}^o}} \right) = \left( {400\sqrt 2 ; - 400\sqrt 2 } \right)\)
Do đó, lực \(\overrightarrow F \) tổng hợp các lực tác động lên vật có tọa độ là: \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \left( {1500 + 300\sqrt 3 + 400\sqrt 2 ;300 - 400\sqrt 2 } \right)\)
Độ lớn lực tổng hợp \(\overrightarrow F \) tác động lên vật là: \(\left| {\overrightarrow F } \right| = \sqrt {{{\left( {1500 + 300\sqrt 3 + 400\sqrt 2 } \right)}^2} + {{\left( {300 - 400\sqrt 2 } \right)}^2}} \approx 2599\left( N \right)\)
Gọi D là đỉnh thứ tư của hình bình hành OADB.
Khi đó ta có: \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} \)
Ta có: OA = OB = 120 suy ra tứ giác OADB là hình thoi
\( \Rightarrow \widehat {AOD} = \widehat {BOD} = \frac{{{{120}^o}}}{2} = {60^o}\)
\( \Rightarrow \Delta AOD\) đều (do OA = AD và \(\widehat {AOD} = {60^o}\))
\( \Rightarrow OD = OA = 120\)
Mặt khác: Do vật đứng yên nên \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \Leftrightarrow \;\overrightarrow {{F_3}} = - (\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} ) = - \overrightarrow {OD} \)
Suy ra vecto \(\overrightarrow {OC} \) là vecto đối của vecto \(\overrightarrow {OD} \)
Lại có: \(\widehat {COA} = {180^o} - \widehat {AOD} = {120^o}\).Tương tự: \(\widehat {COB} = {120^o}\)
Vậy cường độ của lực \(\overrightarrow {{F_3}} \)là 120 N, tạo với lực\(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \) góc \({120^o}\).
Ta có: \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\;\overrightarrow {{F_2}} = \overrightarrow {OB}= \overrightarrow {AC} \)
Khi đó: Hợp lực \(\overrightarrow F \) là \(\overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {OB} \).
Áp dụng định lí cosin cho tam giác OAC, ta có:
\(\begin{array}{*{20}{l}}
{\;\;\;{\mkern 1mu} {\kern 1pt} \;O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A}\\
\begin{array}{l}
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos ({180^o} - \alpha )\\
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} + 2.OA.AC.\cos \alpha
\end{array}\\
{ \Leftrightarrow \left| {\vec F} \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \alpha } }
\end{array}\)
-Tàu sẽ chuyển động theo hướng tổng hợp lực \(\overrightarrow{F}\).
-Để tính được độ lớn của lực kéo tác dụng lên tàu ta cần xác định lực \(F_1,F_2\) và góc tạo bởi hai lực đó.
Đặt \(\overrightarrow{F_1}=\overrightarrow{OA};\overrightarrow{F_2}=\overrightarrow{OB}\) ; \(\left|\overrightarrow{OA}\right|=100;\left|\overrightarrow{OB}\right|=100\).
Dựng hình bình hành OBDA.
Theo quy tắc hình bình hành \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OD}\).
Do OA = OB = 100 nên tứ giác OBDA là hình thoi.
Vì vậy \(OD\perp AB\) và \(OD=2OK\).
Áp dụng định lý Pi-ta-go \(OK=\sqrt{OA^2-AK^2}=\sqrt{100^2-50^2}=50\sqrt{3}\).
\(OD=2OK=2.50\sqrt{3}=100\sqrt{3}\).
Vì vậy \(\left|\overrightarrow{OD}\right|=100\sqrt{3}\).
Từ đó duy ra: \(\left|\overrightarrow{F_1}+\overrightarrow{F_2}\right|=100\sqrt{3}\).
Vì vậy cường độ tổng lực của \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) là \(100\sqrt{3}N\).
Tham khảo:
Bước 1: Đặt \(\overrightarrow u = \overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} \). Ta xác định các điểm như hình dưới.
Dễ dàng xác định điểm C, là điểm thứ tư của hình bình hành ABCD. Do đó vecto \(\overrightarrow u \) chính là vecto \(\overrightarrow {AC} \)
Vì chất điểm A ở trang thái cân bằng nên \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \) hay \(\;\overrightarrow u + \;\overrightarrow {{F_3}} = \overrightarrow 0 \)
\( \Leftrightarrow \;\overrightarrow u \) và \(\;\overrightarrow {{F_3}} \) là hai vecto đối nhau.
\( \Leftrightarrow A\) là trung điểm của EC.
Bước 2:
Ta có: \(\left| {\overrightarrow {{F_1}} } \right| = AD = 20,\;\left| {\overrightarrow {{F_2}} } \right| = AB,\;\left| {\overrightarrow {{F_3}} } \right| = AC.\)
Do A, C, E thẳng hàng nên \(\widehat {CAB} = {180^o} - \widehat {EAB} = {60^o}\)
\(\begin{array}{l} \Rightarrow \widehat {CAD} = {90^o} - {60^o} = {30^o}\\ \Rightarrow \left\{ \begin{array}{l}AC = \frac{{AD}}{{\cos {{30}^o}}} = \frac{{40\sqrt 3 }}{3};\;\\AB = DC = AC.\sin {30^o} = \frac{{20\sqrt 3 }}{3}.\end{array} \right.\end{array}\)
Vậy \(\;\left| {\overrightarrow {{F_2}} } \right| = \frac{{20\sqrt 3 }}{3},\;\;\left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}.\)
Áp dụng quy tắc hình bình hành ta có: \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} \);
\(AC = OB = 600\); \(\widehat {AOB} = 60^\circ \Rightarrow \widehat {OAC} = 120^\circ \) (hai góc bù nhau trong hình bình hành).
Áp dụng định lý cos ta có:
\(OC = \sqrt {O{A^2} + A{C^2} - 2OA.AC.\cos (120^\circ )} \)
\( = \sqrt {{{400}^2} + {{600}^2} - 2.400.600.\cos (120^\circ )} \simeq 871,78\)N
Vậy độ lớn của vectơ hợp lực \(\overrightarrow F \) gần bằng 871,78 N.