Tính nhanh
A= 3/4 + 5/36 + 7/144 + ... + 99/6002500
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
=>A<\(\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\)
=>A<\(\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{12}-\frac{1}{14}\right)\)\(:2\)=\(\left(\frac{1}{2}-\frac{1}{14}\right):2\)<\(\frac{1}{2}\)
=>A<\(\frac{1}{2}\)
1/ -7264 + (1543 + 7264)
=-7264 + 1543 + 7264=1543
2/ (144 – 97) – 144
=144-97-144=-97
3/ (-145) – (18 – 145)(Vì có dấu trừ ở trước ngoặc nên p đổi dấu)
=-145-18+145=-18
4/ 111 + (-11 + 27)
=111-11+27=137
a) 1+2+3+...+99+100
giải
Từ 1 đến 100 có 100 số.Như vậy,số cặp số là:
100:2=50(cặp)
Mỗi cặp số có tổng bằng:
1+100(2+99)(3+98)...=11
Kết quả của phép tính là:
101x50=5050
Đáp số:5050
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
a) A = 1 - 2 + 3 - 4 + ... + 99 - 100
=> A = ( 1 - 2) + ( 3 - 4 ) + ... + ( 99 - 100 )
=> A = ( -1 ) + ( -1 ) + ... + ( -1 )
Vì tổng A có 100 số hạng,2 số hạng tạo thành 1 cặp nên 100 số hạng tạo thành 50 cặp
=> A = ( -1 ) . 50
=> A = -50
b) B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50
=> B = -400
c ) C = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100
=> C = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
=> C = 0 + 0 + ... + 0
=> C = 0
A = 1 - 2 + 3 - 4 + ..... + 99- 100
A = ( 1 -2 ) + ( 3 - 4 ) + ..... + ( 99 - 100 ) ( 50 nhóm )
A = 1 + 1 + .... + 1 ( 50 số 1 )
A = 1 . 50
A = 50
1)-7264+(1543+7264)=-7264+1543+7264=1543
2)(144-97)-144=144-97-144=-97
3)(-145)-(18-145)=-145-18+145=-18
4)111+(-11+27)=111-11+27=100+27=127
5)(27+514)-(486-73)=27+514-486-73=541-486-73=55-73=-18
6)(36+79)+(145-79-36)=36+79+145-79-36=145
7)10-[12-(-9-1)]=10-[12+9+1]=10-12-9-1=-12
8)(38-29+43)-(43+38)=38-29+43-43-38=-29
9)271-[(-43)+271-(-17)]=271-[-43+271+17]=271+43-271-17=43-17=26
10)-144-[29-(+144)-(+144)]=-144-[29-144-144]=-144-29+144+144=-29+144=115
\(A=\left(1-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{16}\right)+...+\left(\dfrac{1}{2401}-\dfrac{1}{2500}\right)\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{2401}-\dfrac{1}{2500}\)
\(A=1-\dfrac{1}{2500}=\dfrac{2499}{2500}\)