K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

 1+1/22+1/32+...+1/100​2​ <1+1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<2 (dpcm)

k cho mk nha : thắc mắc liên hệ mk giúp cho.

18 tháng 7 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\) 

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ................

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2-\frac{1}{100}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\) (đpcm)

5 tháng 12 2016

Ta có:25.12511 < 12811.25 < 277.32 = 282
=> 25.12511 < 282 
=> 535 < 282 
=> 1035 < 2117 
Ta có: 
2^96 = 4096^8 
2^96 < 41^8.10^16 
2^81 < 2.41^8.5^16...(*) 

Lại có: 9.2^13 < 9.8200 < 73000 < 625.125 
=> 9.2^13 < 5^7 
=> 300^2.2^9 < 5^11 
=> 17^4.2^9 < 5^11...(vì 17^2 <300) 
=> 1700^4.2 < 5^19 
=> 2.41^8 < 5^19 ...(vì 41^2 <1700) 
=> 2.41^8.5^16 < 5^35 
          kết hợp với (*) => 2^81 < 5^35 
Suy ra:đpcm
=> 2^81 < 5^35 < 2^81 
=> 2^116 < 10^35 < 2^117....đpcm 

5 tháng 12 2016

\(10^{35}=2^{35}.5^{35}\)

\(2^{116}=2^{35}.2^{81};2^{117}=2^{35}.2^{82}\)

can C/m

\(2^{81}<5^{35}<2^{82}\)

C/M

\(5^{35}<2^{82}\)(nang mu len 7.3=21 )

\(5^{35.21}<2^{82.21}\Leftrightarrow\left(5^3\right)^{^{7.35}}<\left(2^7\right)^{^{3.82}}\Leftrightarrow125^{245}<128^{246}\)=.> dpcm 

50% xem the nao da

4 tháng 7 2016

mới giải đucợ 1 vế nè. xem tạm nhé
đặt cái biểu thức là S đi ^^
ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}.\frac{1}{n\left(n+1\right)} =\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right) .\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\sqrt{n}.\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right).\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 =\(\sqrt{n}.\frac{2}{\sqrt{n}}.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

áp dụng ta được: \(\frac{1}{2\sqrt{1}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{2}}\)

...................................................

\(\frac{1}{2011\sqrt{2010}}< \frac{2}{\sqrt{2010}}-\frac{2}{\sqrt{2011}}\)

=> \(S< 2-\frac{2}{\sqrt{2011}}< \frac{88}{45}\)
còn một vế nữa để mai nhé ^^ giờ mình bận :P hì

4 tháng 7 2016

mình bị ấn sai r :3 \(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\)đó nhá.sr nha ^^

23 tháng 3 2021

0<?<13/12.

vậy, 0<1<13/12

24 tháng 3 2021

ok bạn nhưng không biết có đúng ko

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?