Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hãy viết tất cả các tập hợp con của tập hợp \(A = \{ a;b;c\} \)
b) Tìm tất cả các tập hợp B thỏa mãn điều kiện \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)
a) Các tập hợp con của tập hợp \(A = \{ a;b;c\} \)gồm:
+) Tập rỗng: \(\emptyset \)
+) Tập con có 1 phần tử: \(\{ a\} ,\{ b\} ,\{ c\} .\)
+) Tập con có 2 phần tử: \(\{ a;b\} ,\{ b;c\} ,\{ c;a\} .\)
+) Tập hợp A.
b) Tập hợp B thỏa mãn \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)là:
+) \(B = \{ a;b\} \)
+) \(B = \{ a;b;c\} \)
+) \(B = \{ a;b;d\} \)
+) \(B = \{ a;b;c;d\} \)
Chú ý
Mọi tập hợp A luôn có hai tập con là \(\emptyset \) và A.
a) Các tập hợp con của tập hợp \(A = \{ a;b;c\} \)gồm:
+) Tập rỗng: \(\emptyset \)
+) Tập con có 1 phần tử: \(\{ a\} ,\{ b\} ,\{ c\} .\)
+) Tập con có 2 phần tử: \(\{ a;b\} ,\{ b;c\} ,\{ c;a\} .\)
+) Tập hợp A.
b) Tập hợp B thỏa mãn \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)là:
+) \(B = \{ a;b\} \)
+) \(B = \{ a;b;c\} \)
+) \(B = \{ a;b;d\} \)
+) \(B = \{ a;b;c;d\} \)
Chú ý
Mọi tập hợp A luôn có hai tập con là \(\emptyset \) và A.