K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

A B C

giả sử tam giác ABC vuông tại A

Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow25=16+9\)* đúng *

Vậy giả sử là đúng hay tam giác ABC vuông tại A ( đpcm ) 

12 tháng 5 2021

A B C D E F

a, Xét \(\Delta ABC\) có: 

\(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A  (định lí Pytago đảo)   (đpcm)

b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)

              \(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)

Xét \(\Delta ABD\) và \(BDE\) có:

\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)

BD cạnh chung

\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)

\(\Rightarrow AD=DE\) (2 cạnh tương ứng)   (đpcm)

c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))

              \(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)

\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)

Xét \(\Delta ADF\) và \(\Delta CDE\) có:

\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)

AD = DE (vì \(\Delta ADF=\Delta EDC\))

\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)   (đpcm)

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

22 tháng 3 2023

Có hình vẽ ko ạ

20 tháng 2 2022

Áp dụng đlý Pytago vào tam giác ABC:

AC2=BC2+AB2

52=42+32

52=25

Vậy tam giác ABC là tam giác vuông tại B (dpcm)

23 tháng 4 2017

Cách vẽ:

Vẽ AC = 5 cm.

Vẽ cung tròn (A; 3 cm).

Vẽ cung tròn (C; 4 cm).                                                                      

Hai cung tròn cắt nhau tại B. Vẽ đoạn thẳng BA, BC ta được tam giác ABC.

  B A C 5 cm 3 cm 4 cm

Tam giác ABC có 1 góc vuông tại B

23 tháng 4 2017

tam giác ABC là tam giác vuông do:

AC =AB+BC2 ( ĐỊNH LÝ  PY TA GO)

VẬY tam giác ABC vuông tại B

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\)có: 

\(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

Do đó \(BC^2=AB^2+AC^2\)theo định lí Pythaogore đảo suy ra tam giác \(ABC\)vuông tại \(A\).

b) Xét tam giác \(DBA\)và tam giác \(DBE\)

\(\widehat{DAB}=\widehat{DEB}\left(=90^o\right)\)

\(DB\)cạnh chung

\(\widehat{DBA}=\widehat{DBE}\)

Suy ra \(\Delta DBA=\Delta DBE\)(cạnh huyền - góc nhọn) 

\(\Rightarrow DA=DE\)(hai cạnh tương ứng) 

10 tháng 5 2016

a)Ta có: BC2=52=25 (1)

AB2+AC2=32+42=25 (2)

Từ (1);(2)=>BC2=AB2+AC2(=25)

=>tam giác ABC vuông tại A (PyTaGo đảo)

b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:

BD:cạnh chung

^ABD=^EBD (vì BD là phân giác của ^ABE)

=>tam giác ABD=tam giác EBD(ch-gn)

=>DA=DE (cặp cạnh t.ứ)

b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)

Mà DA=DE(cmt)

=>DF>DE

10 tháng 5 2016

Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:

DA=DE(cmt)

^ADF=^EDC (2 góc đối đỉnh)

=>tam giác ADF=tam giác EDC (cgv-gnk)

=>DF=DC (cặp cạnh t.ứ)

DF ko bằng DE bn nhé!