\(\frac{1}{4}\times\frac{2}{6}\times\frac{3}{8}\times...\times\frac{30}{62}\times\frac{31}{64}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=2^x\)
=>\(\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}....\frac{30}{2.31}.\frac{31}{2.32}=2^x\)
=>\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.2.6...2.31.2.32}=2^x\)
=>\(\frac{2.3.4.5...30.31}{2^{31}.32.\left(2.3.4.5...31\right)}=2^x\)
=>\(\frac{1}{2^{31}.2^5}=2^x\)
=>\(\frac{1}{2^{36}}=2^x\)
=> x=36
Vậy x=36
Chúc bn học tốt nhé!
\(\frac{1.2.3....31}{2^{30}.\left(2.3....31\right).32}=\frac{1}{2^{31}.32}=\frac{1}{2^{36}}=2^{-36}=2^x\)
Vậy x=-36
Hok tốt
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=4^x\)
\(\Leftrightarrow\)\(\frac{1.2.3.4.5.....30.31}{4.6.8.10.12.....62.64}=4^x\)
\(\Leftrightarrow\)\(\frac{2.3.4.5.....30.31}{2\left(2.3.4.5.....30.31\right).64}=4^x\)
\(\Leftrightarrow\)\(\frac{1}{128}=4^x\)
\(\Leftrightarrow\)\(2^{2x}=2^{-7}\) ( trong sgk có phần đọc thêm nói về cái này nhé )
\(\Leftrightarrow\)\(2x=-7\)
\(\Leftrightarrow\)\(x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
a.5/6 - 26/5 X 1/13 = 13/30
b.( 19/23 - 22/46 ) X 23/46 = 3/23
c.25/8 x 14/30 = 35/24
d.( 3/4 x 5/7 ) x ( 20/9 x 14/15 ) = 10/9
e.4/35 x 25/32 x 38/24 = 95/672
g. 1/2 x 3/4 x 2/3 x 4/5 = 1/5
h.5/6 x 11/4 - 5/4 x 23/6 = -5/2
i.9/16 x 13/4 - 9/4 x 5/16 + 9/16 x 17/4 = 225/64
k.( 7 x 1/3 ) x ( 1/7 x 6 ) = 2
m.2/3 x ( 3/5 + 3/7 ) = 34/35
n.4/5 x ( 5/8 + 7/4 ) = 19/10
p.( 1/33 + 31/333 - 341/3333 ) x ( 1/2 - 1/3 - 1/6 ) = 0
mih giành cả nửa tiếng để giải đó , k nha
a) $\frac{1}{6} \times \frac{2}{3} = \frac{{1 \times 2}}{{6 \times 3}} = \frac{2}{{18}} = \frac{1}{9}$
b) $\frac{6}{5} \times \frac{3}{8} = \frac{{6 \times 3}}{{5 \times 8}} = \frac{{18}}{{40}} = \frac{9}{{20}}$
c) $\frac{4}{3} \times \frac{8}{9} = \frac{{4 \times 8}}{{3 \times 9}} = \frac{{32}}{{27}}$
d) $\frac{5}{{12}} \times \frac{{12}}{5} = \frac{{5 \times 12}}{{12 \times 5}} = \frac{{60}}{{60}} = 1$
\(=\frac{1x2x3x...x30x31}{2^{31}x\left(2x3x4x...x31x32\right)}=\frac{1}{2^{31}x32}=\frac{1}{2^{36}}\)