K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Cách 1:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\( \Leftrightarrow \overrightarrow {KA}  =  - 2\overrightarrow {KB} \)

Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)

\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)

Cách 2:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB}  + \overrightarrow {BA} } \right) + 2\overrightarrow {KB}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  + \overrightarrow {BA}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB}  = \frac{1}{3}\overrightarrow {AB} \end{array}\)

Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).

b)

Với O bất kì, ta có:

\(\frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB}  = \frac{1}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK}  + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA}  + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK}  + \frac{1}{3}\left( {\overrightarrow {KA}  + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)

Vì \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \)

Vậy với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {OA}  + 3\overrightarrow {OB}  = \overrightarrow 0 \)

\(\begin{array}{l}
\overrightarrow {OA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + \overrightarrow {BA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + 3\overrightarrow {OB} = - \overrightarrow {BA} \\
\Leftrightarrow 4\overrightarrow {OB} = \overrightarrow {AB} \\
\Leftrightarrow \overrightarrow {OB} = \frac{1}{4}\overrightarrow {AB}
\end{array}\)

Vậy O thuộc đoạn AB sao cho \(OB = \frac{1}{4}AB\)

 

b) Ta có: 

\(\begin{array}{l}
\overrightarrow {MA} + 3\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right) + 3\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\\
= \left( {\overrightarrow {MO} + 3\overrightarrow {MO} } \right) + \left( {\overrightarrow {OA} + 3\overrightarrow {OB} } \right)\\
= 4\overrightarrow {MO} + \overrightarrow 0 = 4\overrightarrow {MO} . (đpcm)
\end{array}\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {MA}  + \left( {\overrightarrow {MA}  + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA}  + \overrightarrow {AC} } \right) = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MA}  + \overrightarrow {AB}  + 2\overrightarrow {AC}  = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {AM}  = \overrightarrow {AB}  + 2\overrightarrow {AC} \\ \Leftrightarrow \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \end{array}\)

Trên cạnh AB, AC lấy điểm D, E sao cho \(AD = \frac{1}{4}AB;\;\,AE = \frac{1}{2}AC\)

 

Khi đó \(\overrightarrow {AM}  = \overrightarrow {AD}  + \overrightarrow {AE} \) hay M là đỉnh thứ tư của hình bình hành AEMD.

b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \)

Với mọi điểm O, ta có: \(\left\{ \begin{array}{l}\overrightarrow {OA}  = \overrightarrow {OM}  + \overrightarrow {MA} ;\;\\\overrightarrow {OB}  = \overrightarrow {OM}  + \overrightarrow {MB} ;\;\,\\\overrightarrow {OC}  = \overrightarrow {OM}  + \overrightarrow {MC} \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = \left( {\overrightarrow {OM}  + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + 2\left( {\overrightarrow {OM}  + \overrightarrow {MC} } \right)\\ = 4\overrightarrow {OM}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right) = 4\overrightarrow {OM}  + \overrightarrow 0  = 4\overrightarrow {OM} .\end{array}\)

Vậy với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \).

24 tháng 9 2023

Tham khảo cách 2 câu a: 

 

Cách 2:

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {MC}  + \overrightarrow {CA} } \right) + \left( {\overrightarrow {MC}  + \overrightarrow {CB} } \right) + 2\overrightarrow {MC}  = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MC}  + \overrightarrow {CA}  + \overrightarrow {CB}  = \overrightarrow 0 \\ \Leftrightarrow 4.\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {CB} \end{array}\)

Gọi D là đỉnh thứ tư của hình bình hành ACBD.

Khi đó: \(\overrightarrow {CD}  = \overrightarrow {CA}  + \overrightarrow {CB} \)\( \Rightarrow 4.\overrightarrow {CM}  = \overrightarrow {CD} \)

\( \Leftrightarrow \overrightarrow {CM}  = \frac{1}{4}\overrightarrow {CD}  \Leftrightarrow \overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CO} \)

 

Với O là tâm hình bình hành ACBD, cũng là trung điểm đoạn AB.

 

Vậy M là trung điểm của trung tuyến kẻ từ C của tam giác ABC.

30 tháng 3 2017

Ta có: 3 + 2 = => 3 = -2 => = -

Đẳng thức này chứng tỏ hi vec tơ , là hai vec tơ ngược hướng, do đó K thuộc đoạn AB

Ta lại có: = - => KA = KB

Vậy K là điểm chia trong đoạn thẳng AB theo tỉ số

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Cách 1:

\(\overrightarrow {MA}  + 4\overrightarrow {MB}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {MA}  =  - 4\overrightarrow {MB}  \Rightarrow \frac{{MA}}{{MB}} = \frac{{\left| {\overrightarrow {MA} } \right|}}{{\left| {\overrightarrow {MB} } \right|}} = \frac{{\left| { - 4\overrightarrow {MB} } \right|}}{{\left| {\overrightarrow {MB} } \right|}} = 4\) và hai vectơ \(\overrightarrow {MA} ,\overrightarrow {MB} \) ngược hướng

Suy ra M nằm giữa AB sao cho \(\frac{{MA}}{{MB}} = 4\)

Cách 2: 

\(\begin{array}{l}
\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\\
\Leftrightarrow \overrightarrow {MB} + \overrightarrow {BA} + 4\overrightarrow {MB} = \vec 0\\
\Leftrightarrow 5\overrightarrow {MB} = \overrightarrow {AB}
\end{array}\)

Vậy A, M, B thẳng hàng, M nằm giữa A và B sao cho \(MB = \frac{1}{5}AB\)

20 tháng 12 2022

a: vecto AB+2vecto BM=vecto 0

=>vecto AB=-2 vecto BM=-2 vecto MB

=>vecto BA=2 vecto BM

=>M là trung điểm của AB

b: =>2 vecto NA=3 vecto NB

=>vecto NA=3/2 vecto NB

=>NA=3/2NB và N nằm giữa A và B

8 tháng 11 2016

A B C D I K

a)

  • \(\overrightarrow{BI}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\) (t/c trung điểm)

\(=\frac{1}{2}\left(\overrightarrow{BA}+\frac{1}{2}\overrightarrow{BC}\right)\)

\(=\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\)

  • \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)

\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{AC}\)

\(=\overrightarrow{BA}+\frac{1}{3}\left(\overrightarrow{BC}-\overrightarrow{BA}\right)\)

\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}-\frac{1}{3}\overrightarrow{BA}\)

\(=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}\)

b) Ta có: \(\overrightarrow{BK}=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}=\frac{4}{3}\left(\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\right)=\frac{4}{3}\overrightarrow{BI}\)

=> B,K,I thẳng hàng

c) \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)

\(\Leftrightarrow27\left(\overrightarrow{MC}+\overrightarrow{CA}\right)-8\left(\overrightarrow{MC}+\overrightarrow{CB}\right)=2015\overrightarrow{MC}\)

\(\Leftrightarrow27\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{MC}-8\overrightarrow{CB}-2015\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow-1996\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{CB}=\overrightarrow{0}\)

\(\Leftrightarrow1996\overrightarrow{CM}=8\overrightarrow{CB}-27\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)

Vậy: Dựng điểm M sao cho \(\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)

12 tháng 5 2017

a)Giả sử điểm K thỏa mãn:
\(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)\(\Leftrightarrow\overrightarrow{KB}+\overrightarrow{BA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
\(\Leftrightarrow3\overrightarrow{KB}=\overrightarrow{CB}-\overrightarrow{BA}\)
\(\Leftrightarrow\overrightarrow{KB}=\overrightarrow{CB}+\overrightarrow{AB}\).
Xác định: \(\overrightarrow{CB}+\overrightarrow{AB}\).
A B C D
Lấy điểm D sao cho B là trung điểm của DC.
\(\overrightarrow{CB}+\overrightarrow{AB}=\overrightarrow{BD}+\overrightarrow{AB}=\overrightarrow{AD}\).
Điểm K xác định sao cho : \(\overrightarrow{KB}=\overrightarrow{AD}\) hay tứ giác AKBD là hình bình hành.
A B C D K

12 tháng 5 2017

b) Gọi G là trọng tâm tam giác ABC.
Ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\overrightarrow{MG}\)\(+2\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\overrightarrow{GC}\).
Giả sử điểm M thỏa mãn:
\(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
Điểm M được xác định để \(\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
A B C G T M
Gọi T là trung điểm của AB nên \(\overrightarrow{CG}=2\overrightarrow{GT}\).
Vì vậy điểm M được xác định là trung điểm của GT.

NV
27 tháng 10 2020

a.

\(\overrightarrow{IA}+2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)=\overrightarrow{0}\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{AB}=0\)

\(\Leftrightarrow\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AB}\)

Vậy I là điểm nằm trên đoạn thẳng AB sao cho \(AI=\frac{2}{3}AB\)

b.

Gọi G là trọng tâm tam giác ABC

\(\overrightarrow{KG}+\overrightarrow{GA}+2\left(\overrightarrow{KG}+\overrightarrow{GB}\right)=\overrightarrow{CG}+\overrightarrow{GB}\)

\(\Leftrightarrow3\overrightarrow{KG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{KG}=\overrightarrow{0}\)

\(\Leftrightarrow\) K trùng G hay K là trọng tâm tam giác

c.

\(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\left(\overrightarrow{MG}+\overrightarrow{GC}\right)=0\)

\(\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=0\Leftrightarrow\overrightarrow{GM}=\frac{1}{4}\overrightarrow{GC}\)

Vậy M là điểm nằm trên đoạn thẳng CG sao cho \(GM=\frac{1}{4}CG\)