\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
chúc bạn học tốt:)
h)\(\sqrt{5}+\sqrt{9-4\sqrt{5}}=\sqrt{5}+\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}\)
\(=\sqrt{5}+\sqrt{\left(\sqrt{5-2}\right)^2}\)
\(=\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}+\sqrt{5}-2\)
\(=2\sqrt{5}-2\)
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)