K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {GD}  =  - \overrightarrow {DG} \)

\( \Rightarrow \overrightarrow v  = \overrightarrow {DE}  + ( - \overrightarrow {DG} ) = \overrightarrow {DE}  + \overrightarrow {GD} \)

\( \Rightarrow \overrightarrow v  = \overrightarrow {GD}  + \overrightarrow {DE}  = \overrightarrow {GE} \) (tính chất giao hóan)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vận dụng tính chất giao hoán ta có: \[\overrightarrow u  = \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \]

Chọn C.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).

Vì \(\overrightarrow a  = \overrightarrow {AB}  \Leftrightarrow \overrightarrow {MN}  = \overrightarrow {AB} \) nên tứ giác MNBA là hình bình hành.

Nói cách khác B là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow a \) và điểm A.

Tương tự, C là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow b \) và điểm B.

 

b) Dễ thấy: tổng của hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) là vecto \(\overrightarrow {AC} \).

Do đó tổng của hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)bằng vecto \(\overrightarrow {AC} \).

Ta có viết: \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

28 tháng 11 2022

a: vecto DE

=vecto DA+vecto AE

=-2vecto AB+2/5*vecto AC

vecto DG=vecto DB+vecto BG

=-2*vecto AB-vecto GB

=-2vecto AB-(-vecto GA-vecto GC)

=-2 vecto AB-(vecto CG-vecto GA)

=-2vecto AB-(vecto CG+vecto AG)

=-2vecto AB+vecto GA+vecto GC

=-2*vecto AB+2*vecto GF

=-2vecto AB+2*1/3*vecto BF

=-2*vecto AB+2/3(vecto BA+vecto BC)

=-2vecto AB-2/3vecto AB+2/3*veto BC

=-8/3vecto AB+2/3*(vecto BA+vecto AC)

=-10/3vecto AB+2/3vecto AC

b: vecto DE=-2vecto AB+2/5vecto AC

vecto DG=-10/3vecto AB+2/3*vecto AC

Vì \(\dfrac{-2}{-\dfrac{10}{3}}=2:\dfrac{10}{3}=\dfrac{6}{10}=\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{2}{3}\)

nên D,E,G thẳng hàng

11 tháng 12 2020

u(1/2;-5).    v(k;-4)

NV
17 tháng 4 2022

\(2\overrightarrow{y}-\overrightarrow{z}=2\overrightarrow{a}-2\overrightarrow{b}-2\overrightarrow{c}+3\overrightarrow{b}+2\overrightarrow{c}=2\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{x}\)

\(\Rightarrow\) Ba vecto \(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}\) đồng phẳng

13 tháng 8 2019

\(a\text{) }\overrightarrow{AB}-\overrightarrow{CD}=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)-\overrightarrow{CD}\\ =\overrightarrow{AC}-\left(\overrightarrow{CD}-\overrightarrow{CB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(b\text{) }\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}=\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)\\ =\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{AD}+\overrightarrow{DA}=0\)

\(c\text{) }\overrightarrow{AC}+\overrightarrow{DE}-\overrightarrow{DC}-\overrightarrow{CE}+\overrightarrow{CB}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DE}-\overrightarrow{DC}\right)-\overrightarrow{CE}\\ =\overrightarrow{AB}+\overrightarrow{CE}-\overrightarrow{CE}=\overrightarrow{AB}\)

\(d\text{) }\overrightarrow{AB}+\overrightarrow{DE}+\overrightarrow{CF}\\ =\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)+\left(\overrightarrow{CE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}+\left(\overrightarrow{FE}+\overrightarrow{EF}\right)\\ =\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{CB}+\overrightarrow{DF}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC}  \Leftrightarrow \overrightarrow {BC}  = \overrightarrow b  - \overrightarrow a \)

Lại có: vecto \(\overrightarrow {BD} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BD} } \right| = \frac{1}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BC}  = \frac{1}{3}(\overrightarrow b  - \overrightarrow a )\)

Tương tự: vecto \(\overrightarrow {BE} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BE} } \right| = \frac{2}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BE}  = \frac{2}{3}\overrightarrow {BC}  = \frac{2}{3}(\overrightarrow b  - \overrightarrow a )\)

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  \Leftrightarrow \overrightarrow {AD}  = \overrightarrow a  + \frac{1}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AE}  \Leftrightarrow \overrightarrow {AE}  = \overrightarrow a  + \frac{2}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{1}{3}\overrightarrow a  + \frac{2}{3}\overrightarrow b \)