Cho ba điểm M, N, P. Vecto \(\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} \) bằng vecto nào sau đây?
A. \(\overrightarrow {PN} \)
B. \(\overrightarrow {PM} \)
C. \(\overrightarrow {MP} \)
D. \(\overrightarrow {NM} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\overrightarrow {GD} = - \overrightarrow {DG} \)
\( \Rightarrow \overrightarrow v = \overrightarrow {DE} + ( - \overrightarrow {DG} ) = \overrightarrow {DE} + \overrightarrow {GD} \)
\( \Rightarrow \overrightarrow v = \overrightarrow {GD} + \overrightarrow {DE} = \overrightarrow {GE} \) (tính chất giao hóan)
Chọn B.
a) Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).
Vì \(\overrightarrow a = \overrightarrow {AB} \Leftrightarrow \overrightarrow {MN} = \overrightarrow {AB} \) nên tứ giác MNBA là hình bình hành.
Nói cách khác B là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow a \) và điểm A.
Tương tự, C là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow b \) và điểm B.
b) Dễ thấy: tổng của hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) là vecto \(\overrightarrow {AC} \).
Do đó tổng của hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)bằng vecto \(\overrightarrow {AC} \).
Ta có viết: \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
\(2\overrightarrow{y}-\overrightarrow{z}=2\overrightarrow{a}-2\overrightarrow{b}-2\overrightarrow{c}+3\overrightarrow{b}+2\overrightarrow{c}=2\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{x}\)
\(\Rightarrow\) Ba vecto \(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}\) đồng phẳng
a)\(\overrightarrow{AB}+\overrightarrow{AN}=\overrightarrow{AM}\)
b)\(\overrightarrow{BA}+\overrightarrow{CN}=2\overrightarrow{BA}\)
c)Có \(\overrightarrow{AB}=\overrightarrow{NC}\)=>bt trở thành \(\overrightarrow{NC}+MC+\overrightarrow{MN}=\overrightarrow{MC}-\overrightarrow{MC}=vt0\)
d)có vt BA+vt BC=vtBN
bt trở thành vtMN-vtMN=vt0
hok tốt!
Vận dụng tính chất giao hoán ta có: \[\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \]
Chọn C.