Mũi tên xuất phát từ A đến B trong Hình 34 mô tả chuyển động (có hướng) của một máy bay trên đường băng.
Đoạn thẳng AB có hướng được gọi là gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi thời gian xuất phát là to, điểm gốc tại A, chiều dương là chiều từ A đến B .
- Theo bài ra ta có : \(\left\{{}\begin{matrix}x_1=30t\\x_2=L+40t\\x_{3.1}=L-50t\end{matrix}\right.\)
- Ta có : Khi xe 1 và xe 3 gặp nhau thì tổng quãng đường đi được là AB.
\(\Rightarrow80t=L\)
\(\Rightarrow t=\dfrac{L}{80}\)
=> Hai xe gặp nhau lại điểm cách A : \(\dfrac{30L}{80}=\dfrac{3L}{8}\left(km\right)\)
- Xét quá trình từ sau khi xe 1 gặp xe 3 :\(\left\{{}\begin{matrix}x_1=\dfrac{3L}{8}+30t^,\\x_2=40.\dfrac{L}{80}+L+40t^,\\x_3=\dfrac{3L}{8}+50t^,\end{matrix}\right.\)
- Để xe 2 đuổi kịp xe 3 thì \(\dfrac{3}{2}L+40t^,=\dfrac{3}{8}L+50t^,\)
Lại có : \(t=\dfrac{L}{80}\)
\(\Rightarrow t+t^,=0,09=\dfrac{L}{80}+t^,\)
- Giair hệ ta được : \(\left\{{}\begin{matrix}L=0,72\left(km\right)\\t^,=0,081\left(h\right)\\t=0,009\left(h\right)\end{matrix}\right.\)
b, Ta có : \(d_{3-1}=\dfrac{3}{8}L+50t^,-\dfrac{3}{8}L-30t^,=1,62\left(km\right)\)
Vậy ,....
- Gọi chiều dương là chiều từ người đi bộ hướng tới người đi xe đạp , thời gian gốc là to, điểm mốc tại người đi bộ và khoảng cách giữa người đi bộ và đi xe đạp là x0 ( km, x > 0 ) và 3 người xe đạp, bộ, xe máy lần lượt là 1,2,3 .
- Theo bài ra ta có : \(\left\{{}\begin{matrix}x_1=x_0+20t\\x_2=vt\\x_3=-2x_0+60t\end{matrix}\right.\)
- Để 3 người cùng gặp nhau tại 1 điểm .
=> \(x_1=x_2=x_3=x\)
\(\Rightarrow x_0=\dfrac{40}{3}t\)
\(\Rightarrow x=\dfrac{100}{3}t=vt\)
\(\Rightarrow v=\dfrac{100}{3}\left(km/h\right)\)
Vậy ...
Phương trình chuyển động của xe máy xuất phát từ A chuyển động nhanh dần đều không vận tốc đầu với gia tốc a 1 = 2,5. 10 - 2 m/ s 2 :
Phương trình chuyển động của xe máy xuất phát từ B cách A một đoạn x 0 = 400 m chuyển động nhanh dần đều không vận tốc đầu với gia tốc a 2 = 2,0. 10 - 2 m/ s 2 :
Đoạn thẳng AB có hướng được gọi là vecto \(\overrightarrow {AB} \).